标题 | 五年级下册数学《分数的基本性质》教学设计 |
范文 | 五年级下册数学《分数的基本性质》教学设计(精选5篇) 作为一名人民教师,往往需要进行教学设计编写工作,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。如何把教学设计做到重点突出呢?以下是小编收集整理的五年级下册数学《分数的基本性质》教学设计(精选5篇),仅供参考,希望能够帮助到大家。 五年级下册数学《分数的基本性质》教学设计1一、故事引人,揭示课题。 1、教师讲故事。猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。同学们,你知道哪只猴子分得多吗? 讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。 引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题) [一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。] 2、组织讨论。 (1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。 (2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:3/4=6/8=9/12。 (3)我们班有50名同学,分成了五组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:1/2=2/4=20/40。 3、引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书: 分数的分子和分母变化了, 分数的大小不变。 它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。 4、出示例2:把1/2和10/24化成分母是12而大小不变的分数。 思考:要把1/2和10/24化成分母是12而大小不变的分数,分子怎么不变?变化的依据是什么? 5、讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢? [得出性质后,再让学生说出猴王的想法,并回答如果小猴子要四块,猴王怎么办?既前后照应,又让学生在轻松愉快的帮猴王想办法的过程中,运用新知解决实际问题。] 6、质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。 通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12 [有助于学生顺利地运用分数与除法的关系,以及整数除法中商不变性质说明分数的基本性质,实现新知化归旧知。]它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。 二、比较归纳,揭示规律。 1、出示思考题。 2、比较每组分数的分子和分母: (1)从左往右看,是按照什么规律变化的? (2)从右往左看,又是按照什么规律变化的? 让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。 3、集体讨论,归纳性质。 (1)从左往右看,由3/4到6/8,分子、分母是怎么变化的?引导学生回答出:把3/4的分子、分母都乘以2,就得到6/8。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到6/8。 板书: (2)3/4是怎样变化成9/12的呢?怎么填?学生回答后填空。 (3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。 (4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。 (板书:都乘以相同的数) (5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。 (板书:都除以) (6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”? (板书:零除外) (7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。 [新知识力求让学生主动探索,逐步获取。“猴王分饼”和分析班级学生人数得出的三组相等的分数为学生探索新知提供材料,出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。] 五年级下册数学《分数的基本性质》教学设计2教学目标: 1、让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。 2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。 3、培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。 教学重点:使学生理解分数的基本性质。 教学难点:让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。 教学过程: 一、故事情景引入 同学们,每年的中秋节你们都会吃什么呢?对了,月饼。中秋吃月饼是我们中国传统风俗。去年的中秋节,易老师的邻居李奶奶家里,发生了一件有趣的事情,大家想不想知道? 好,既然大家都这么好奇,就张开小耳朵认真听。去年的中秋节呀,李奶奶家的孙儿小红、小明、小兵都来了,家里可热闹了。李奶奶笑得合不拢嘴,她拿出一个又大又圆的月饼,对孙儿们说:“孩子们,奶奶给你们分月饼了。老大小红,奶奶分这块月饼的1/3给你,老二小明,奶奶分这块月饼的2/6给你,老三小兵,奶奶分这块月饼的3/9给你,(边讲边贴出名字和三个分数)你们同意吗?”奶奶的话刚讲完,小红就嘟着嘴叫了起来:“奶奶你不公平!分给小兵的多,分给我的少!”小明连忙叫着:“奶奶不公平,奶奶偏心!”只有小兵在偷着乐。 同学们,你们觉得奶奶公平吗?现在同桌之间讨论一下。 讨论完了请举手。 生甲:“我觉得不公平,小红分得多。” 生乙:“我觉得小明分得多。” 生丙:“我觉得公平,他们三个分得一样多。” 师:“看样子我们班的同学也争论起来了,到底李奶奶的月饼分得公不公平,上完这一节课同学们就会明白了。” 二、新授 师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(圆片)有几张?(三张)” 请你们把这三张圆片叠起来,比一比大小,看看怎么样? 生:“三张圆片一样大。” 1、师: “ 下面我们就用三张一样大的圆片代替月饼,象李奶奶一样来分月饼了。” 首先,请在第一张圆片上表示出它的1/3; 再在第二张圆片上表示出它的2/6; 然后在第三张圆片上表示出它的3/9。 好了,大家动手分一分。(教师巡视指导) 2、师:“分完了的请举手? 老师跟你们一样,也准备了三张同样大小的圆片。(边说边操作,同样大) 下面请哪位同学说一说,你是怎么分的?” 生:“把第一个圆片平均分成三份,取其中的一份,就是它的三分之一。” 生:“把第二个圆片平均分成六份,取其中的两份,就是它的六分之二。” 师:“那九分之三又是怎么得到的呢?大家一起说。” 生:“把这块圆片平均分成九份,取其中的三份,就是它的九分之三。 ” (学生说的同时,教师操作,分完后把圆片贴在黑板上。) 3、师:“同学们,观察这些圆的阴影部分,你有什么发现?” 小结:原来三个圆的阴影部分是同样大的。 师:“ 现在再来评判一下,奶奶分月饼公平吗?为什么?”(请几名学生回答) 生:“奶奶分月饼是公平的,因为他们三个分得的月饼一样多。” 师:“现在我们的意见都统一了,奶奶是非常公平的,他们三个人分的月饼一样多。那你觉得1/3、2/6、3/9这三个分数的大小怎么样呢?” 生甲:“通过图上看起来,这三个分数应该是一样大的。” 生乙:“这三个分数是相等的。” 师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号) 4、研究分数的基本规律。 师:“我们仔细观察这一组分数,它的什么变了,什么没变?” 生甲:“三个分数的分子分母都变了,大小没变。” 师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。 第一个分数从左往右看,跟第二个分数比,发生了什么变化?” 生乙:“它的分子分母都同时扩大了两倍。” 师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了三倍。 再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书) 教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?” 学生发言 小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的基本性质。 5、深入理解分数的基本性质。 师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言) 师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到108页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么? 齐读分数的基本性质,并用波浪线表出关键的词。 生甲:我觉得“零除外”这个词很重要。 生乙:我觉得“同时”“相同”这两个词很重要。 师:想一想为什么要加上“零除外”?不加行不行? 让学生结合以前学过的商不变的性质讨论,为什么加“零除外”。 教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。) 三、应用 1、学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。 2、学生练习课本例题2,两名学生在黑板上做。 3、学生自己小结方法。 4、按规律写出一组相等的分数。 五年级下册数学《分数的基本性质》教学设计3教学目标: 1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。 2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。 学习目标: 1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。 2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数 重点难点: 1、使学生理解分数的基本性质。 2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。 过程设计: 一、激情导入 1、导入课题 生读故事。 唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗? 师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系? 2、明确目标 理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。 3、预期效果 达到教学目标 二、民主导学 任务一 任务呈现 动手操作验证性质 自主学习 师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求 1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。 2、仔细观察三张纸的涂色部份,你们能发现什么? 师:同位分工合作完成。现在开始。 师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现? 请二至三位同学说一说。 师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢? 生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。 师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想) 下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。 生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。 请二名同学重复。 师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢? 生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。 请一至二名同学回答。 师板书:分数的分子分母同时乘相同的数,分数的大小不变。 师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几? 师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢? 请一同学回答, 生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。 师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢? 生:分数的分子分母同时除以相同的数,分数的大小不变。 (二名学生重复) 师板书:或者除以 师:你能根据刚才总结的规律举一个例子吗? 让三名学生举出例子,师板书。并问:分子分母同时除以了几? 展示交流 师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的.数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号) 生:不成立, 师:为什么 生:因为0不能作除数, 师:0不能作除数,所以这个式子是错误的。(画叉) 师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号) 生:不成立,因为在分数当中分母相当于除数,除数不能为0。 师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话 生:0除外 师板书0除外 师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢? 生:同时和相同的数 师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题) 师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。 生齐读二遍。 师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。 任务二 任务呈现 课本76页的例2,请一同学读题。 自主学习 生独立完成,完成后和同位的同学说一说你是怎样想的。 展示交流 每题请二名同学回答,(集体订正答案) 检测导结 1、目标练习 76页“做一做” 练习十四的1、2、6、7题 2、结果反馈 生做完后同桌交流,再指名说说结果。 3、反思总结 今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。 三、辅助设计 教具课件设计 小黑板正方形纸数块 板书设计 分数的基本性质 练习和作业设计 1、完成课本76页做一做中的1、2题。 生独立完成,师指名回答。 2、完成练习十四中的1、2、5、6、7题。 师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。 五年级下册数学《分数的基本性质》教学设计4教学目标: 结合趣味故事经历认识分数的基本性质的过程。 初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。 经历观察、操作和讨论等学习活动,体验数学学习的乐趣 教学重点:理解掌握分数的基本性质。 教学难点:归纳分数的性质。 学生准备:长方形纸片。 一、创设故事情境,激发学生学习兴趣并揭示课题。 编了一个唐僧师徒4人分西瓜的故事,利用孙悟空的机智聪明和猪八戒贪吃的特点。创设问题情境引起学生的探究兴趣,通过把一个西瓜平均分成4块,猪八戒吃了一块,再把这西瓜平均分成8块,猪八戒吃了2块。最后把西瓜分16块,猪八戒吃了4块,设计这个故事的目的是使学生在已有生活经验和分数知识的背景下,了解猪八戒没有多吃到饼的事实,为理解分数的基本性质提供实践经验。在看完故事后向学生提问你了解到了哪些数学信息,想到了什么问题? 让学生讨论并用自己的方法说明八戒没有多吃到饼。让学生亲自动手折一折、分一分、比一比,通过课件从直观上让学生感受到这三个分数大小是相等的。而这两个分数的分子和分母都不相等,可分数却相等,这其中有什么规律呢,从而来揭示课题。 二、小组合作,探究新知: 1、动手操作、形象感知 出示课件,让学生观察讨论图中分数的涂色部分是多少? A、谈话:请同学们拿出课前准备好的一张正方形的纸,你能先对折,并涂出它的1/4吗? B、追问:你能通过继续对折,每次找一个和1/4相等的其他分数吗? C、学生操作,并组织交流:每次对折后,正方形被平均分成多少份。涂色部分有几份。并思考可以用什么分数表示涂色的部分,得到的分数与1/4是否相等。交流时让不同对折方法的学生充分展示。 2、观察比较、探究规律 (1)通过动手操作,你认为它们谁大?请到展示台上一边演示一边讲一讲。 (2既然这三个分数相等,那么我们可以用什么符号把它们连接起来? (3)这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请同学们四人为一组,讨论这两个问题 (4)通过从左到右的观察、比较、分析,你发现了什么? 使学生认识到这四个正方形同样大,虽然平均分的份数不一样,但阴影部分的面积相等,四个分数也相等。课件出示连等式子。 【通过展示不同的对折方法,使学生体会解决问题方法的多样性,拓展学生的思维。】 3引导观察:请大家观察每个等式中的两个分数,它们的分子、分母是怎样变化的? 观察思考后。在课文上填空,再在小组内交流。然后教师再集中指导观察: 先从左往右看:1/4是怎样变为与它相等的2/8的?由2/8到4/16,分子、分母又是怎样变化的?谁用一句话说出它的变化规律?再从右往左看:4/16是怎样变化成与之相等的2/8的?2/8、1/4呢?用一句话说出它的变化规律? 4、归纳规律 提问:综合以上两种变化情况,谁能用一句话概括出其中的规律? 学生交流归纳,最后全班反馈“分数的分子和分母同时乘或除以相同的数﹙0除外﹚,分数的大小不变,这是分数的基本性质” 6、小结 同学们在这节课的学习中表现得很出色,说一说你有什么收获或体会? 【通过小结,既对整个课堂学习的内容有一个总结,又能让学生产生后续学习和探究的欲望,将学生的学习兴趣延伸到了下节课】 四、巩固强化,拓展应用 多样的练习可以让学生及时巩固所学知识,又调动了学生学习的积极性。 五、游戏找朋友。 六、布置作业: 在上这课之前,认真备课,精心设计课堂思路,准备好教具。课前,活跃气氛。开始可能是由于农村吧,基本上,上课都是用黑板,难得一次上课时利用多媒体上课的。学生对此也是很有兴趣的,特别是在创设情景的时候,很开心的投入课堂气氛来。紧接着动手操作等步骤都很好。唯一不足是学生没感大胆发言。对于问题,答得不是很清晰。教师让学生主动探索,逐步获取规律,最后也都一一的解答并归纳分数的性质。对于从左到右的变化,分子分母都变大了,但分数大小不变。从右到左,分子分母都变小,分数大小不变。从而得出规律。对于这分数的性质要让学生抓住几个重点词,“都”“乘以或除以”“相同的数”“零除外”重点让学生熟记分数的性质。多层的巩固练习。加深学生的理解。并且能运用分数的性质完成作业。最后,让学生轻松愉快地应用着这节课所学的知识进行找朋友的游戏。 五年级下册数学《分数的基本性质》教学设计5教学内容:人教版小学数学第十册第107页至108页。 教学目标: 1、知识目标:通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。 2、能力目标:培养学生的观察能力、动手操作能力和分析概括能力等。 3、情感目标:让学生在学习过程中养成互相帮助、团结协作的良好品德。 教学准备:长方形纸片、彩笔、各种分数卡片。 教学过程 一、创设情境,激发兴趣 1、课件示故事。同学们,今天是快乐的,老师祝愿同学们节日快乐!在我们欢庆自己的节日时,花果山圣地也早已是一派节日喜庆的气氛。 【六一节到了,猴山上张灯结彩,小猴们享受着节日的快乐。猴王给小猴们做了三块他们爱吃的饼。它先把第一块饼平均切成四块,分给第一只小猴贝贝一块。第二只小猴佳佳见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给第二只小猴两块。第三只小猴丁丁急了,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给第三只小猴丁丁三块。贝贝、佳佳见了,连忙说:“猴爷爷,不公平,不公平,我们要分得和丁丁的同样多。”】 “同学们,猴王真的分得不公平吗?” 二、动手操作、导入新课 同学们,这个故事告诉了我们什么?猜想一下猴王分得公平吗?为什么公平?我们平常怎样去做?让我们也来分分看。请每组拿出课前准备的三张长方形纸片,共同来分一分,并完成操作报告(课件出示操作报告)。请小组长分工一下,明确记录的同学。 任选一小组的同学台前展示实验报告,并汇报结论。 教师根据学生汇报板书:14=28=312 2、组织讨论。 (1)通过操作我们发现三只猴子分得的饼同样多,表示它们分得饼的分数是相等关系。那么,这三个分数什么变了,什么没有变?让学生小组讨论后答出:它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。 (2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?学生通过观察演示得出结论教师板书:34=68=912。 3、引入新课:黑板上二组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母, 分数的大小不变。虽然他们的分子和分母变化了,但是它们的大小却不变。那么他们的分子和分母变化有规律吗?我们今天就来共同探讨这个变化规律。 三、比较归纳,揭示规律。 请每组拿出探究报告,任意选择黑板上的二组相等分数中的一组,共同讨论、探究,并完成探究报告。 1、课件出示探究报告。 2、分组汇报,归纳性质。 (1)从左往右看,分子、分母的变化规律怎样?选择一组学生根据探究报告,到黑板上边说边用箭头表示出分子、分母的变化过程。 (根据学生回答板书:同时乘上 相同的数) (2)从右往左看,分数的分子和分母又是按照什么规律变化的? (根据学生的回答板书:除以 ) (3)有与这一组探究的分数不一样的吗?你们得出的规律是什么? (4)综合刚才的探究,你发现什么规律? 根据学生的回答,揭示课题, (……这叫做板书:分数的基本性质) 对这句话你还有什么要补充的?(补充“零除外”) 讨论:为什么性质中要规定“零除外”? (红笔板书:零除外) (5)齐读分数的基本性质。在分数的基本性质中,你认为要提醒大家注意些什么?(同时、相同的数、0除外)。为什么?你能举例说明吗?教师则根据学生回答,在相应的字下面点上着重号。 师生共同读出黑板上板书的分数基本性质(要求关键的字词要重读)。 3、智慧眼(下列的式子是否正确?为什么?) (1)35=3×25=65 (生:35的分子与分母没有同时乘以2,分数的大小改变。) (2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除数的大小不同,分数的大小也不同) (3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,没有同时乘以或除以,分数的大小不相等。) (4)25=2×x5×x=2x5x (生:x在这里代表任何数,当x=0时,分数的大小改变。) 4、示课件讨论:现在你知道猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?用分数表示为?如果要五块呢? 三、回归书本,探源获知 1、浏览课本第107—108页的内容。 2、看了书,你又有什么收获?还有什么疑问吗? 3、师生答疑。 你会运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质吗? 4、自主学习并完成例2,请二名学生说出思路。 四、多层练习,巩固深化。 1、热身房。35=3×()5×()=9() 824=8÷()24÷()=()3 学生口答后,要求说出是怎样想的? |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。