标题 | 小学数学《圆柱的表面积》教学设计优秀 |
范文 | 小学数学《圆柱的表面积》教学设计优秀 作为一无名无私奉献的教育工作者,总不可避免地需要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么优秀的教学设计是什么样的呢?下面是小编收集整理的小学数学《圆柱的表面积》教学设计优秀,仅供参考,希望能够帮助到大家。 小学数学《圆柱的表面积》教学设计优秀1一、设计理念 新一轮课程标准指出:“数学学习的内容应当是现实的、有意义的,富有挑战性的,这些内容有利于学生主动的进行观察、实验、猜测、验证、推理与交流等教学活动” 二、教学策略 1、创设生活情景,激励自主探索。 2、创建探究空间,主动发现新知。 3、自主总结规律,验证领悟新知。 4、解决生活问题,深化所学新知。 三、教材分析 《圆柱的表面积》是小学数学六年级下册第二单元的内容,包括圆柱的侧面积和圆柱的表面积的意义及其计算方法。例3是说明圆柱的表面积的意义,给出圆柱表面积的展开图,让学生了解圆柱表面积的组成部分。例4是让学生运用求圆柱表面积的方法求出做一个厨师帽的用料,使学生学会运用所学知识解决简单的实际问题,并让学生了解进一法取近似值的方法。 四、教学目的: 使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确的运用公式计算出圆柱的侧面积和表面积。 五、教学难点: 理解和掌握求圆柱表面积的计算方法。 六、教具准备: 圆柱表面积展开模型电脑课件 学具准备: 易拉罐、白纸壳、剪子 七、教学过程 (一)创设生活情景,激励自主探索 在导入新课时,老师用孩子们喜欢喝饮料的爱好创建生活情景:“同学们爱喝饮料吗?”“爱喝。”“给你一个饮料罐,你想知道什么?”学生提了很多问题,“有的问题以后在研究,今天我们来解决用料问题。假如你是一个小小设计师,要设计一个饮料罐,至少要多少平方米的铁皮?” (评析:数学来源于生活又应用于生活实际,因此,用贴近儿童的生活实际去创设情景,很容易激发学生的求知欲,激活学生已有知识与经验,使其自主地积极探索新知,解决问题。) (二)创设探究空间,主动发现新知 1、认识圆柱的表面积 师:我们先来做一个“饮料罐”(出示模型)薄纸壳当铁皮,你们想怎么做? 生:要卷一个圆筒,要剪两个圆粘合在圆筒的两边就行了。 师:用什么形状的纸来做卷筒呢?(有的学生动手剪开模型) 生:我知道了,圆筒是用长方形纸卷成的! 师:各小组试试看,这位同学说的对吗? (其他小组也剪开模型,有的得到了长方形,有的得到了平行四边形,有的得到了正方形。) 师:还有别的可能吗?如三角形、梯形。 生:不能。如果是的话,就不是这种圆柱形的饮料罐了。 (评析:学生能拆开纸盒看个究竟,说明学生对知识的渴望,学生是在自主学习的基础上合作完成了对圆柱各部分组成的认识。培养了学生的创造能力。) 2、把实际问题转化为数学问题 师:我们先研究把圆筒剪开展平是一个长方形的情况。“求这个饮料罐要用铁皮多少?”这一事件从数学角度看,是个怎样得数学问题? 学生观察、思考、议。 生A:它是圆柱体:两端是同样的两个圆,当中是长方形铁皮卷成的圆柱。 生B:求饮料罐铁皮用料面积就是求: 圆面积X 2 +长方形面积 生C:必须知道圆的半径、长方形的长和宽才能求面积。 生D:我看只要知道圆的半径和高就可以求出用料面积。 师:我们让这位同学谈谈他的想法。 生D:长方形的长与圆的周长相等,长方形的宽与高相等。 所以只要知道圆的半径就可求出长方形的长,也可求出圆的面积。 师随着板书:长方形的面积=长×宽 圆柱的侧面积=底面周长×高 (三)自主总结规律,验证领悟新知 让学生就顺利地导出了圆柱的侧面积计算方法:S = 2 πr h 师:如果圆柱展开是平行四边形,是否也适用呢? 学生动手操作,动笔验证,得出了同样适用的结论。 (评析:学生在教师创设的情境中,由学生得出结论,又让学生验证,极大地发挥了学生的主观能动性,充分地展示自我,使学生个性得到发展。) (四)解决生活问题,深化所学新知 师:大家谈得很好,现在小组合作,计算出“饮料罐”的铁皮面积。 生汇报。 师:通过计算,你有哪些收获? 生E:我知道了,圆柱的则面积等于地面周长乘以高,圆柱的表面积等于侧面积加上底面积和的两倍。 生F:在得数保留时,我觉得应该用进一法取值,因为用料问题应比实际多一些,因为有损耗,所以要用进一法。 (评析:教师让学生合作学习,自主发现问题,交流解决。) 课件出示例四,读题明题意,学生试做,全班交流。 课件出示第16页第七题,学生试做,全班交流。 讨论:如果一段圆柱形的木头,截成两截,它的表面积会有什么变化呢?小结,谈收获。 八、板书设计 S表面积=S侧+2S底 =2πrh+2πr 小学数学《圆柱的表面积》教学设计优秀2教学目标: 1、让学生经历操作、观察、比较和推理,发现圆柱侧面展开的形状,并能正确计算圆柱的侧面积。 2、理解圆柱表面积的含义,探究计算圆柱表面积的计算方法。 3、能正确运用公式计算圆柱的侧面积和表面积。 教学重点: 1、理解圆柱侧面积和表面积的意义。 2、培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。 教学难点: 能正确计算圆柱的侧面积和表面积。 教学具准备: 圆柱形状的罐头,外面有可以展开的商标纸。 预习作业: 1、预习课本第21-22页的例2、例3。 2、掌握圆柱侧面积和体积的计算方法。 3、在作业本上完成第22页练一练第1题、第2题。 教学过程: 一、预习效果检测 1、圆柱的侧面积= 2、什么叫做圆柱的表面积? 3、圆柱的表面积= 4、一个圆柱,底面半径是2厘米,高是6厘米。求它的侧面积。 二、合作探究 (一)、教学例1 1、出示一个圆柱形的罐头,罐头的侧面贴了一张商标纸。 问:你能想办法算出这张商标纸的面积吗? ⑴拿出圆柱形的罐头,量出相关数据,在小组中讨论。 ⑵交流:你们是怎么算的? 沿高展开,得到一个长方形商标纸,量出它的长和宽,再算出它的面积。 ⑶讨论:商标纸的面积就是圆柱中哪个面的面积? 观察一下,展开后的长方形商标纸的长与宽,与圆柱中的什么有关?有什么关系? 使学生认识到:长方形的长就是圆柱的底面周长,宽就是圆柱的高。 2、出示例1中的罐头。 ⑴师:这个罐头的侧面也有一张商标纸,如果不展开,能算出这张商标纸的面积吗?测量什么数据比较方便? ⑵出示数据:底面直径11厘米高:15厘米 ⑶学生算出商标纸的面积。 ⑷交流:你是怎么算的?先算什么?再算什么? 如果知道的.是底面半径,怎么算呢? 3、小结:算商标纸的面积,实际上就是算圆柱的侧面积。 追问:怎么算圆柱的侧面积? 根据学生回答板书:圆柱侧面积=底面周长×高 4、练习:完成“练一练”第1题。 (二)、教学例3 1、出示例3中的圆柱。 ⑴问:如果将这个圆柱的侧面展开,得到的长方形的长和宽分别是多少厘米? ⑵让学生算一算后交流。师板书: 长:3.14×2=6.28(厘米)宽:2厘米 ⑶圆柱的两个底面的直径和半径分别是多少厘米? 板书:直径2厘米半径1厘米 2、引导画出圆柱的展开图。 ⑴这个圆柱有几个面?分别是什么? ⑵如果要画出这个圆柱的展开图,要画哪几个图形?分别画多大? ⑶在书上方格纸上画出这个圆柱的展开图。 ⑷交流:你是怎么画的? 3、认识圆柱的表面积。 ⑴讨论:什么是圆柱的表面?怎么算圆柱的表面积? 板书:圆柱的表面积=底面圆的面积×2+圆柱侧面积 ⑵算出这个圆柱的表面积。 算后交流,提醒学生分步计算。 4、练习:完成“练一练”第2题。 (三)、全课总结 这节课我们学习了什么?(板书:圆柱的表面积) 三、当堂达标检测 1、完成练习六第1题。 2、完成练习六第2题。 小学数学《圆柱的表面积》教学设计优秀3一、教案背景 “圆柱的表面积”是北师大版小学数学教材第十二册的内容,是在学生已有初步的几何概念,空间想象力的基础上进行教学的。教学目的在于通过教学活动,培养学生观察能力,勤于动脑,善于思考,培养以创新的思维解决开放性的问题,及合作学习的能力和对数学的学习兴趣。 学生课前准备: (1)准备矿泉水瓶等一些圆柱形物品。 (2)自带小剪刀和图画纸。 二、教学课题 圆柱体表面积的教学是本单元的第二个主题活动,其前知识基础应该是圆柱体的认识和长方体、正方体表面积的认识和计算。 1、使学生理解圆柱体侧面积和表面积的含义。 2、通过操作独立推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。 3、体验成功与失败的收获,体会合作的愉悦。 三、教材分析 《圆柱的表面积》是北师大版小学数学第十二册第一单元的内容。在这个阶段,学生已经直观认识了长方体、正方体、圆柱和球,并初步了解了长方形、正方形、圆等平面图形的性质,学习了这些图形的面积计算,学生还认识了长方体(正方体),掌握了长方体(正方体)表面积与体积的含义及其计算方法。在此基础上,本单元进一步学习圆柱和圆锥的知识。本单元学习的内容主要有:圆柱和圆锥的认识、圆柱的表面积、圆柱和圆锥的体积等。根据教材的编写意图,圆柱的表面积的教学应该重视让学生结合具体情境进行有效的操作活动。本课是学生已经认识了圆柱体的特点以后进行的内容。 四、教学重点 通过学生操作演示,推导出圆柱侧面积、表面积的计算公式 五、教学难点 使学生认识圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系。教学之前用百度在网上搜索《圆柱的表面积》的相关教学材料,找了很多教案和材料作参考,了解到教学的重点和难点,确定课堂教学形式和方法。然后根据课堂教学需要,利用百度搜索关于圆柱的视频,课堂放给学生观看,加深印象。用百度图片网上搜索下载一些圆柱的图片,培养学生读图识别能力。通过百度在网上搜索一些关于圆柱的文字资料和图片资料,做成PPT课堂给同学们演示,生动直观、活泼有趣地学习本课。 六、教学方法 情境教学法、实践操作法、迁移类推法 1、生用自己喜欢的方式,将矿泉水瓶的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体水瓶有什么关系? 2、能用已有的知识计算它的面积吗? 七、教学过程 (一)创设情境,激趣导入 【设计意图:本环节通过出示生活中一些圆柱体图片,创设情境,并通过师生对话交流, 激起学生求知欲,让学生饶有兴趣的步入本节课的殿堂。】 教师提问:认识这些物体吗? 学生回答:圆柱体 教师谈话:那我们本节课就再次走入圆柱的世界,去探索它的表面积。(板书课题) (二)自主探索,发现问题 【设计意图:本环节将数学与实际生活密切联系在一起,利用百度视频—圆瓶贴标机,让学生感受到圆柱的侧面是哪一部分,并通过学生动手操作,从而让学生清楚的知道了圆柱侧面展开得到的图形,从而顺利的解决了重难点】 圆柱的侧面积 学生回答:(给圆柱形瓶子贴标签) 教师提问:标签的面积应该是圆柱的什么面积呢? 学生回答:侧面积 教师谈话:那我们就一起用手中的实物瓶子来一起操作吧。 1、用喜欢的方式,将个人的瓶子的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体水瓶有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形) (展开的形状可能是长方形、平行四边形、正方形等) 独立操作后,与小组里的同学交流。 2、能用已有的知识计算它的面积吗? 先计算一个瓶子需要的包装纸,自己操作测量,进行动手学习活动,教师进行巡视指导。 3、小组汇报。 重点感受:圆柱体侧面如果沿着高展开是一个长方形。 教师提问:这个长方形与圆柱体有什么关系?学生回答:长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高。 (课件展示) 长方形的面积=圆柱的侧面积 即长×宽=底面周长×高 所以,圆柱的侧面积=底面周长×高 S侧=C×h 如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h 教师提问:如果圆柱展开是平行四边形,是否也适用呢? 学生动手操作,动笔验证,得出了同样适用的结论。 4、解决问题: 10000瓶矿泉水,需要用多少平方米的包装纸呢? 小组交流:只解决1个瓶子的包装纸的面积即可 圆柱表面积 1、教师提问:出示主题图:做一个圆柱形纸盒,需要多大面积的纸板? 这一事件从数学角度看,是个怎样数学问题? 学生回答:求圆柱表面积 教师引导学生说一说圆柱体表面展开图是什么样的,教师再出示圆柱体展开图 2、教师提问:圆柱体的表面积怎样求呢? 学生得出结论:圆柱的表面积=圆柱的侧面积+底面积×2 3、学生独立解答,汇报想法。 (三)巩固练习,实际应用 【设计意图:本环节则是让学生将新学到的知识与实际相结合,充分体现了“数学来源于生活,服务于生活”的思想,进而巩固新知。】 一根圆柱底面直径是2米,高3米,表面积是多少? (四)回顾全课,加深印象 【设计意图:本环节的设计是让学生通过自己谈收获,从而抓住本节课的学习重点,也梳理了知识的头绪。】 (1)圆柱的侧面沿着高展开可能是()形,也可能是()形。第二种情况是因为() (2)要求一个圆柱的表面积,一般需要知道哪些条件() (五)开阔视野,课外延伸 【设计意图:本环节我则利用了百度搜索的强大功能,寻找到所需要的习题,让学生走出书本的束缚,开阔了知识面,从而达到举一反三的目的。】 出示课外习题 板书设计: 圆柱体的表面积 圆柱的侧面积=底面周长×高→S侧=ch ↓↑↑ 长方形面积=长×宽 圆柱的表面积=圆柱的侧面积+底面积×2 八、教学反思 本节课充分利用了百度搜索功能,并与教材有机的结合,突出了重点,解决了难点。教学中采用操作和演示、讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练相结合。 1、把握重点,突破难点,合理利用教材 对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。 2、直观演示和实际操作相结合 通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知。 3、讲解与练习相结合 本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。 小学数学《圆柱的表面积》教学设计优秀4一、学习目标: 1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。 2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。 二、学习重点: 掌握圆柱侧面积和表面积的计算方法。 三、学习难点: 运用所学的知识解决简单的实际问题。 四、学习过程: (一)、旧知复习 1、圆柱有几个面?分别是xx、xx和xx。 2、底面是xx形,它的面积=xx 。 3、侧面是一个曲面,沿着它的高剪开,展开后得到一个xx形。它的长等于圆柱的xx,宽等于圆柱的xx。 4、一个圆形水池,直径是5米,沿着水池走一圈是多少米? (二)列式为 1、圆柱的侧面积 (1)圆柱的侧面积指的是什么? (2)圆柱的侧面积的计算方法: 圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积= xx,所以圆柱的侧面积= 。 (3)侧面积的练习 求下面各圆柱的侧面积。 ①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。 小结:要计算圆柱的侧面积,必须知道圆柱的xx和xx这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。 2、圆柱的表面积 (1)圆柱的表面是由和组成。 (2)圆柱的表面积的计算方法: 圆柱的表面积= (3)圆柱的表面积练习题 一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米) 分析,理解题意:求需要用多少面料,就是求帽子的。需要注意的是厨师帽没有下底面,说明它只有个底面。 列式计算: ①帽子的侧面积= ②帽顶的面积= ③这顶帽子需要用面料= 小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。 3、巩固练习 一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。 4、总结:通过这节课的学习,你掌握了什么知识? 圆柱的侧面积 圆柱的表面积 五、教学结束: 布置学生课下复习本节课内容。 教学反思 本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思: 一、学生学到了有价值的知识。 学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。 二、培养了学生的科学精神和方法。 新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。 三、促进了学生的思维发展。 传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。 本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。