标题 | 初一数学知识点总结 |
范文 | 北师大版初一数学知识点总结 在平日的学习中,相信大家一定都接触过知识点吧!知识点就是学习的重点。哪些才是我们真正需要的知识点呢?以下是小编为大家收集的北师大版初一数学知识点总结,仅供参考,欢迎大家阅读。 初一数学知识点总结11.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2.三角形的分类 3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 7.高线、中线、角平分线的意义和做法 8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 9.三角形内角和定理:三角形三个内角的和等于180° 推论1直角三角形的两个锐角互余; 推论2三角形的一个外角等于和它不相邻的两个内角和; 推论3三角形的一个外角大于任何一个和它不相邻的内角; 三角形的内角和是外角和的一半。 10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。 11.三角形外角的性质 (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线; (2)三角形的一个外角等于与它不相邻的两个内角和; (3)三角形的一个外角大于与它不相邻的任一内角; (4)三角形的外角和是360°。 12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 13.多边形的内角:多边形相邻两边组成的角叫做它的内角。 14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。 17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。 18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。 19.公式与性质 多边形内角和公式:n边形的内角和等于(n-2)·180° 20.多边形外角和定理: (1)n边形外角和等于n·180°-(n-2)·180°=360° (2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180° 21.多边形对角线的条数: (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。 (2)n边形共有n(n-3)/2条对角线。 初一数学知识点总结21、单项式的定义: 由数或字母的积组成的式子叫做单项式。 说明:单独的一个数或者单独的一个字母也是单项式. 2、单项式的系数: 单项式中的数字因数叫这个单项式的系数. 说明:⑴单项式的'系数可以是整数,也可能是分数或小数。如3x的系数是3的32 系数是1;4.8a的系数是4.8; 3 ⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号, ?4xy2的系数是4;2x2y的系数是4; ⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如?ab的 系数是-1;ab的系数是1; ⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。如2πxy的系数就是2. 3、单项式的次数: 一个单项式中,所有字母的指数的和叫做这个单项式的次数. 说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1 的情况。如单项式2xyz的次数是字母z,y,x的指数和,即4+3+1=8, 而不是7次,应注意字母z的指数是1而不是0; ⑵单项式的指数只和字母的指数有关,与系数的指数无关。 ⑶单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数; 4、在含有字母的式子中如果出现乘号,通常将乘号写作“x ”或者省略不写。 5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。 初一数学知识点总结3一、目标与要求 1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步; 2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念; 3.培养学生获取信息,分析问题,处理问题的能力。 二、重点 从实际问题中寻找相等关系; 建立列方程解决实际问题的思想方法,学会合并同类项,会解ax+bx=c类型的一元一次方程。 三、难点 从实际问题中寻找相等关系; 分析实际问题中的已经量和未知量,找出相等关系,列出方程,使学生逐步建立列方程解决实际问题的思想方法。 四、知识点、概念总结 1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。 2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。 3.条件:一元一次方程必须同时满足4个条件: (1)它是等式; (2)分母中不含有未知数; (3)未知数最高次项为1; (4)含未知数的项的系数不为0. 4.等式的性质: 等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。 等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。 等式的性质三:等式两边同时乘方(或开方),等式仍然成立。 解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。 5.合并同类项 (1)依据:乘法分配律 (2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项 (3)合并时次数不变,只是系数相加减。 6.移项 (1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。 (2)依据:等式的性质 (3)把方程一边某项移到另一边时,一定要变号。 7.一元一次方程解法的一般步骤: 使方程左右两边相等的未知数的值叫做方程的解。 一般解法: (1)去分母:在方程两边都乘以各分母的最小公倍数; (2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号) (3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号 (4)合并同类项:把方程化成ax=b(a0)的形式; (5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a. 8.同解方程 如果两个方程的解相同,那么这两个方程叫做同解方程。 9.方程的同解原理: (1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。 (2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。 初一数学知识点总结4正数和负数 ⒈、正数和负数的概念 负数:比0小的数正数:比0大的数0既不是正数,也不是负数 注意:①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断) ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2、具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如: 零上8℃表示为:+8℃;零下8℃表示为:—8℃ 3、0表示的意义 (1)0表示“没有”,如教室里有0个人,就是说教室里没有人; (2)0是正数和负数的分界线,0既不是正数,也不是负数。如: (3)0表示一个确切的量。如:0℃以及有些题目中的基准,比如以海平面为基准,则0米就表示海平面。 有理数 1、有理数的概念 (1)正整数、0、负整数统称为整数(0和正整数统称为自然数) (2)正分数和负分数统称为分数 (3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。 理解:只有能化成分数的数才是有理数。 ①π是无限不循环小数,不能写成分数形式,不是有理数。 ②有限小数和无限循环小数都可化成分数,都是有理数。 ③整数也能化成分数,也是有理数 注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8也是偶数,—1,—3,—5也是奇数。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。