网站首页  词典首页

请输入您要查询的范文:

 

标题 数学教案-双曲线的几何性质
范文

数学教案-双曲线的几何性质

作为一名优秀的教育工作者,通常会被要求编写教案,教案是教学蓝图,可以有效提高教学效率。快来参考教案是怎么写的吧!以下是小编为大家整理的数学教案-双曲线的几何性质,希望能够帮助到大家。

㈠课时目标

1.熟悉双曲线的几何性质。

2.能理解离心率的大小对双曲线形状的影响。

3.能运用双曲线的几何性质或图形特征,确定焦点的位置,会求双曲线的标准方程。

㈡教学过程

[情景设置]

叙述椭圆的几何性质,并填写下表:

方程

性质

图像(略)

范围-a≤x≤a,-b≤y≤b

对称性对称轴、对称中心

顶点(±a,0)、(±b,0)

离心率e=(几何意义)

[探索研究]

1.类比椭圆的几何性质,探讨双曲线的几何性质:范围、对称性、顶点、离心率。

双曲线的实轴、虚轴、实半轴长、虚半轴长及离心率的定义。

双曲线与椭圆的几何性质对比如下:

方程

性质

图像(略)(略)

范围-a≤x≤a,-b≤y≤bx≥a,或x≤-a,y∈R

对称性对称轴、对称中心对称轴、对称中心

顶点(±a,0)、(±b,0)(-a,0)、(a,0)

离心率0<e=<1

e=>1

下面继续研究离心率的几何意义:

(a、b、c、e关系:c2=a2+b2, e=>1)

2.渐近线的发现与论证

根据椭圆的上述四个性质,能较为准确地把画出来吗?(能)

根据上述双曲线的四个性质,能较为准确地把画出来吗?(不能)

通过列表描点,能把双曲线的顶点及附近的点,比较精确地画出来,但双曲线向何处伸展就不很清楚。

我们能较为准确地画出曲线y=,这是为什么?(因为当双曲线伸向远处时,它与x轴、y轴无限接近)此时,x轴、y轴叫做曲线y=的渐近线。

问:双曲线有没有渐近线呢?若有,又该是怎样的直线呢?

引导猜想:在研究双曲线的范围时,由双曲线的标准方程可解出:

y=± =±

当x无限增大时,就无限趋近于零,也就是说,这是双曲线y=±

与直线y=±无限接近。

这使我们猜想直线y=±为双曲线的渐近线。

直线y=±恰好是过实轴端点A1、A2,虚轴端点B1、B2,作平行于坐标轴的直线x=±a, y=±b所成的矩形的两条对角线,那么,如何证明双曲线上的点沿曲线向远处运动时,与渐近线越来越接近呢?显然,只要考虑第一象限即可。

证法1:如图,设M(x0,y0)为第一象限内双曲线上的仍一点,则

y0=,M(x0,y0)到渐近线ay-bx=0的距离为:

∣MQ∣= =

=.

点M向远处运动,x0随着增大,∣MQ∣就逐渐减小,M点就无限接近于y=

故把y=±叫做双曲线的渐近线。

3.离心率的几何意义

∵e=,c>a, ∴e>1由等式c2-a2=b2,可得===

e越小(接近于1)越接近于0,双曲线开口越小(扁狭)

e越大越大,双曲线开口越大(开阔)

4.巩固练习

求下列双曲线的渐近线方程,并画出双曲线。

①4x2-y2=4 ②4x2-y2=-4

已知双曲线的渐近线方程为x±2y=0,分别求出过以下各点的双曲线方程

①M(4,)②M(4,)

[知识应用与解题研究]

例1求双曲线9y2-16x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。

例2双曲线型自然通风塔的`外形,是双曲线的一部分绕其虚轴旋转而成的曲面,如图;它的最小半径为12m,上口半径为13m,下口半径为25m,高为55m,选择适当的坐标系,求出此双曲线的方程(精确到1m)

㈣提炼总结

1.双曲线的几何性质及a、b、c、e的关系。

2.渐近线是双曲线特有的性质,其发现证明蕴含了重要的数学思想与数学方法。

3.双曲线的几何性质与椭圆的几何性质类似点和不同点。

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2024/12/25 0:45:27