标题 | 简便运算手抄报 |
范文 | 简便运算手抄报 在日常学习、工作生活中,大家一定都接触过手抄报吧,手抄报能有效激发我们的创新意识和求知欲望。那么你有真正了解过手抄报吗?以下是小编帮大家整理的简便运算手抄报,仅供参考,欢迎大家阅读。 简便运算总结 (一)运用加法的交换律、结合律进行计算。要求学生善于观察题目,同时要有凑整意识。 如:5.7+3.1+0.9+1.3,等。 (二)运用乘法的交换律、结合律进行简算。 如:2.5×0.125×8×4等,如果遇到除法同样适用,或将除法变为乘法来计算。如:8.3×67÷8.3÷6.7等。 (三)运用乘法分配律进行简算,遇到除以一个数,先化为乘以一个数的倒数,再分配。 如:2.5×(100+0.4),还应注意,有些题目是运用分配律的逆运算来简算:即提取公因数。如:0.93×67+33×0.93。 (四)运用减法的性质进行简算。减法的性质用字母公式表示:A-B-C=A-(B+C),同时注意逆进行。 如:7691-(691+250)。 (五)运用除法的性质进行简算。除法的性质用字母公式表示如下:A÷B÷C=A÷(B×C),同时注意逆进行, 如:736÷25÷4。 (六)接近整百的数的运算。这种题型需要拆数、转化等技巧配合。 如;302+76=300+76+2,298-188=300-188-2,等。 (七)认真观察某项为0或1的运算。 如:7.93+2.07×(4.5-4.5)等。 总的说来,简便运算的思路是: (1)运用运算的性质、定律等。 (2)可能打乱常规的计算顺序。 (3)拆数或转化时,数的大小不能改变。 (4)正确处理好每一步的衔接。 (5)速算也是计算,是将硬算化为巧算。 (6)能提高计算的速度及能力,并能培养严谨细致、灵活巧妙的工作习惯。 简便运算方法大全 一、什么是简便运算 “简便运算”是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算。 二、简便运算大全 (一)、交换律(带符号搬家法) 当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。 例:256+78-56=256-56+78=200+78=278 450×9÷50=450÷50×9=9×9=81 说明:适用于加法交换律和乘法交换律。 (二)、结合律 (1)加括号法 ①当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。) 例:345-67-33=345-(67+33)=345-100=245 789-133+33=789-(133-33)=789-100=689 ②当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的'运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。) 例:510÷17 ÷3=51÷(17×3)=510÷51=10 1200÷48×4=1200÷(48÷4)=1200÷12=100 (2)去括号法 ①当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈) (注:去括号是添加括号的逆运算) ②当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就 要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈) (注:去掉括号是添加括号的逆运算) 三、乘法分配律 ①分配法 括号里是加或减运算,与另一个数相乘,注意分配。 例:45×(10+2)=45×10+45×2=450+90=540 ②提取公因式 注意相同因数的提取。 例:35×78+22×35=35×(78+22)=35×100=3500 这里35是相同因数。 ③注意构造,让算式满足乘法分配律的条件。 例:45×99+45=45×99+45×1=45×(99+1)=45×100=4500 四、借来还去法 看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难。 例:9999+999+99+9=10000+1000+100+10-4=11110-4=11106 五、拆分法 顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和25,4和25,8和125等。分拆还要注意不要改变数的大小。 例:32×125×25=8×4×125×25=(8×125)×(4×25)=1000×100=100000 125×88=125×(8×11)=125×8 ×11=1000×8=8000 36×25=9×4×25=9×(4×25)=9×100=900 综上所述,在四则混合运算中,简便运算试题的类型不外乎这几种形式,只要掌握四则混合运算顺序,同时掌握好上述简便算法,就可以保证计算的时效。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。