标题 | 初中数学毕业知识点总结 |
范文 | 初中数学毕业知识点总结 在学习中,大家最熟悉的就是知识点吧?知识点就是学习的重点。相信很多人都在为知识点发愁,下面是小编整理的初中数学毕业知识点总结,欢迎大家分享。 初中数学毕业知识点总结11、菱形的定义:有一组邻边相等的平行四边形叫做菱形。 2、菱形的性质: ⑴矩形具有平行四边形的一切性质; ⑵菱形的四条边都相等; ⑶菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 ⑷菱形是轴对称图形。 3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。 4、因式分解要素: ①结果必须是整式 ②结果必须是积的形式 ③结果是等式 ④因式分解与整式乘法的关系:m(a+b+c) 5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。 6、公因式确定方法: ①系数是整数时取各项最大公约数。 ②相同字母取最低次幂。 ③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。 7、提取公因式步骤: ①确定公因式。 ②确定商式。 ③公因式与商式写成积的形式。 8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。 9、中被开方数的取值范围:被开方数a≥0 10、平方根性质: ①一个正数的平方根有两个,它们互为相反数。 ②0的平方根是它本身0。 ③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。 11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。 12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是0。 13、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。 14、求正数a的算术平方根的方法; 完全平方数类型: ①想谁的平方是数a。 ②所以a的平方根是多少。 ③用式子表示。 求正数a的算术平方根,只需找出平方后等于a的正数。 初中数学毕业知识点总结2平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。 平面直角坐标系的要素: ①在同一平面 ②两条数轴 ③互相垂直 ④原点重合 三个规定: ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向 ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。 ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。 相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。 初中数学毕业知识点总结31、一元二次方程解法: (1)配方法:(X±a)2=b(b≥0)注:二次项系数必须化为1 (2)公式法:aX2+bX+C=0(a≠0)确定a,b,c的值,计算b2-4ac≥0 若b2-4ac>0则有两个不相等的'实根,若b2-4ac=0则有两个相等的实根,若b2-4ac<0则无解 若b2-4ac≥0则用公式X=-b±√b2-4ac/2a注:必须化为一般形式 (3)分解因式法 ①提公因式法:ma+mb=0→m(a+b)=0 平方差公式:a2-b2=0→(a+b)(a-b)=0 ②运用公式法: 完全平方公式:a2±2ab+b2=0→(a±b)2=0 ③十字相乘法 2、锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin):对边比斜边,即sinA=a/c; 余弦(cos):邻边比斜边,即cosA=b/c; 正切(tan):对边比邻边,即tanA=a/b; 余切(cot):邻边比对边,即cotA=b/a; 3、积的关系 sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 4、倒数关系 tanα·cotα=1 sinα·cscα=1 cosα·secα=1 5、两角和差公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 初中数学毕业知识点总结4一、圆 1、圆的有关性质 在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。 由圆的意义可知: 圆上各点到定点(圆心O)的距离等于定长的点都在圆上。 就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。 圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。 圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。 圆心相同,半径不相等的两个圆叫同心圆。 能够重合的两个圆叫等圆。 同圆或等圆的半径相等。 在同圆或等圆中,能够互相重合的弧叫等弧。 二、过三点的圆 l、过三点的圆 过三点的圆的作法:利用中垂线找圆心 定理不在同一直线上的三个点确定一个圆。 经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。 2、反证法 反证法的三个步骤: ①假设命题的结论不成立; ②从这个假设出发,经过推理论证,得出矛盾; ③由矛盾得出假设不正确,从而肯定命题的结论正确。 例如:求证三角形中最多只有一个角是钝角。 证明:设有两个以上是钝角 则两个钝角之和>180° 与三角形内角和等于180°矛盾。 ∴不可能有二个以上是钝角。 即最多只能有一个是钝角。 三、垂直于弦的直径 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。 弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。 推理2:圆两条平行弦所夹的弧相等。 四、圆心角、弧、弦、弦心距之间的关系 圆是以圆心为对称中心的中心对称图形。 实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。 顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。 推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。 五、圆周角 顶点在圆上,并且两边都和圆相交的角叫圆周角。 推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。 初中数学毕业知识点总结5相关的角: 1、对顶角:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 2、互为补角:如果两个角的和是一个平角,这两个角做互为补角。 3、互为余角:如果两个角的和是一个直角,这两个角叫做互为余角。 4、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。 注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。 角的性质 1、对顶角相等。 2、同角或等角的余角相等。 3、同角或等角的补角相等。 |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。