网站首页  词典首页

请输入您要查询的范文:

 

标题 三角形的面积教学设计
范文

三角形的面积教学设计范本

三角形的面积教学设计1

篇一:三角形的面积教学设计

三角形的面积教学设计

教学目标

1.推导三角形的面积公式,沟通长方形、正方形、平行四边形和三角形的内在联系。

2.进一步学习用转化的思想方法解决新的问题。

3.理解三角形的面积与形状无关、与底和高有关,并会运用面积公式求三角形的面积。

课前准备

课件、学具(完全相等的锐角、钝角、直角三角形各一对,任意三角形三个)。

课前分工:每个小组选出一名小组长,实验过程中协调小组内的活动;再选一名记录员,详细记录小组内实验中的每个细节和得到的结论;还得选一名发言人,代表小组汇报结论;最后选一名噪音控制者,控制小组的声音不能过大,以免影响别人。

教学流程

一、创设情境、导入。

师:昨天下午,老师接到了一个任务,想请咱们班的同学帮我一起解决,你们愿意吗?再过1个多月就到元旦了,我们学校过元旦的时候要吸收100名同学入队,(电脑出示:闪动的红领巾)需要做100条红领巾,需要买多少布料?(电脑出示:需要买多少布料?)必须知道什么?

生:必须知道一条红领巾的大小。

师:对,也就是要知道一条红领巾的面积。你们看看红领巾是什么形状的?

生:三角形。

师:三角形面积的计算方法,我们还没有接触过,这节课我们就一起来学习研究三角形的面积。(板书:三角形的面积)

二、新授。

1.复习。

师:回忆一下,平行四边形面积的计算方法是怎么推导的?

生:(略)

师:大家对平行四边形的面积公式的推导掌握得不错(电脑出示:

(1)转化成已学会的求面积计算的图形。(2)找到它们之间的联系,推导出面积计算的公式。)

师:我们先把平行四边形转化成已学会的计算面积的图形长方形,然后找到平行四边形与长方形之间的联系,推导出了平行四边形的面积计算公式。我们能不能依照平行四边形面积公式推导的方法,试着解决三角形面积计算的方法呢?

生:能。

2.第一次操作实践。

师:好,我们先来试试三角形能不能转化成我们已学会的计算面积的图形,以四人小组为单位进行实验。好,开始。

学生实验,教师参与到小组中进行指导。

师:三角形能不能转化成我们已学会的计算面积的图形呢?

生:能。

师:那你们是怎么转化的?哪个小组上来说说,他们汇报的时候,其他小组要注意听,听听他们的结果与你们的有什么不同,如果你有疑问可以向他们提出。

生:我们用两个直角三角形拼成一个长方形。

师:我这儿也有两个直角三角形,可是拼不成,你用的是两个什么样的三角形?(教师操作。)

生:我们用的是两个完全一样的三角形。

师:你怎么知道是两个完全一样的三角形?

生:把两个三角形重合,就可以知道是两个完全一样的三角形。 师:你们用两个完全一样的三角形,拼成了长方形,怎么拼得这么快?

生:我们找到了两条相等的边,而且两个三角形的方向相反。

师:看来呀,要想很快地用两个完全一样的直角三角形拼成长方形,首先要找到对应相等的边,然后把两个三角形反方向对齐。(教师操作。)

师:好,老师把你们的直角三角形放大了,贴到黑板上。还有没有其他结果?

生:我们还用两个完全一样的锐角三角形拼成了平行四边形。 师:你们是怎么拼的?

生:把两个三角形重合,找到相等的边,再把两个三角形反方向对齐,就可以拼出平行四边形。

师:三角形有几条边?

生:三条边。

师:所以,用两个完全一样的三角形中任意两条对应相等的边都可以拼成一个平行四边形。

师:好,贴到黑板上。还有没有别的结果?

生:我们用两个完全一样的钝角三角形,拼成了一个平行四边形。 师:好,贴到黑板上。

生:我们用两个完全一样的等腰直角三角形,拼成了一个正方形。 师:好,也贴到黑板上。

3.第二次操作实践。

师:大家来看,你们已经把三角形转化成了平行四边形、长方形、正方形,那么,怎么推导出三角形的面积方法呢?下面我们进行第二次小组合作,根据你们本组转化的图形,找到它们之间的联系,推导出三角形面积的计算公式,还记得你们各自的角色吗?

生:记得。

师:记录员一定要记录详细。好,开始。

(学生实验,教师参与到小组中进行指导。)

师:同学们讨论得非常认真,找到三角形的面积计算方法了吗? 生:找到了。

师:哪个小组来说说你们是怎么找到的?

生:我们用两个完全一样的三角形拼成了平行四边形,平行四边形的面积是底乘以高,再除以2就可以求出一个三角形的面积。(板书:底×高÷2)

师:是不是求一个三角形的面积,我们一定要拼成平行四边形以后再算?

生:不用。我们发现三角形的底和平行四边形的底相等,三角形的高和平行四边形的高相等,所以三角形的面积是底乘以高再除以2。(板书:三角形的面积=底×高÷2)

师:你们的发现太棒了!同学们,看看你们拼成的平行四边形与三角形之间是不是也存在着底和底相等、高和高相等这种关系?

生:是。

师:拼成的平行四边形与三角形不但面积有关系,它们的底和高也有关系,三角形的底等于拼成的平行四边形的底,这种相等的关系叫做等底,三角形的高等于拼成的平行四边形的高,这种相等的关系叫做等高,那么三角形的底乘以三角形的高求出的是什么?

生:底乘以高求出的是与三角形等底等高平行四边形的面积。 师:说得真好!为什么除以2呢?

生:因为是用两个完全一样的三角形拼成的平行四边形,所以求一个三角形的面积就要除以2。

师:对。拼出长方形的同学是怎么推导公式的呢?

生:长方形的面积是长乘以宽,除以2就是一个三角形的面积。(板书:长×宽÷2)我们发现长方形的长等于三角形的底,长方形的宽等于三角形的高,所以三角形的面积就等于底乘高除以2。(板书:三角形的面积=底×高÷2)

师:你说得真好!拼成正方形怎么推导公式呢?

生:正方形的面积是边长乘以边长,除以2就是三角形的面积。(板书:边长×边长÷2)因为正方形的两条边长分别是三角形的底和高,所以三角形的面积等于底乘高除以2。(板书:三角形的面积=底×高÷2)

师:你们推导得真好!这样,三角形的面积能通过它自己的底和高来求吗?怎么求?

生:(略)

师:用字母S表示三角形的面积,a表示三角形的底,h表示三角形的高,如何用字母表示三角形的面积公式呢?(板书:S=a×h÷2)

生:(略)

三、课堂小结。

师:面对“三角形的面积”这个问题,我们以转化的思想为指导,通过利用已有的“求平行四边形、长方形和正方形的面积”知识推导出三角形的面积公式。

师:现在,你们说说,要求三角形的面积,关键是找哪两个条件? 生:三角形的底和高。

四、巩固练习。

(电脑出示。)

1.指出下列三角形的底和高,并口算它的面积。

2.判断。

(1)三角形的面积是平行四边形的面积的一半。( )

(2)两个完全一样的三角形可以拼成一个平行四边形。( )

(3)一个三角形的底为4厘米,高为3厘米,那么面积为3×4=12平方厘米。( )

(4)两个三角形的高相等,它们的面积相等。( )

3.测量红领巾的面积。

板书设计:三角形的面积

底×高÷2

三角形的面积=底×高÷2

长×宽÷2

三角形的面积=底×高÷2

边长×边长÷2

三角形的面积=底×高÷2

篇二:《三角形的面积》教学设计

教学目标:

1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化思想的价值,发展学生的空间观念和初步的推理能力。

3、让学生在探索活动中获得积极的'情感体验,进一步培养学生学习数学的兴趣。

教学重点:探索并掌握三角形的面积公式,能正确计算三角形的面积。

教学难点:理解三角形面积公式的推导过程。

教学准备:每小组各一个长方形、正方形和平行四边形的纸;每小组各两个完全一样的直角三角形、锐角三角形、钝角三角形,一条红领巾;多媒体课件。

教学过程:

一、动手操作,发现规律

1、师:同学们喜欢玩儿游戏吗?(喜欢)今天我们就来玩一个游戏,好吗?(好)。请各小组拿出为大家准备的长方形、正方形和平行四边形,听好了,既然是游戏当然就有游戏规则,请想一想,如何在每个图形上折一次,使折痕两边的形状、大小完全一样,先思考、讨论有几种折法,再开始折,并用彩色笔画出折痕。看看哪一个小组完成得又好又快!

2、小组学生代表上台汇报操作结果。

3、师根据汇报有选择地在黑板上贴出以下四种折法:

4、让学生观察后提问。

师:这三个图形分别被折成了两个形状、大小完全一样的什么图形?

生:这三个图形分别折成了两个形状,大小完全一样的三角形。

师:如果我们知道长方形长为30厘米,宽为20厘米,它的面积是多少?被折成的每个三角形的面积是多少?你是怎样求出来的?

生1:长方形的面积是30×20=600(平方厘米)

每个三角形的面积是600÷2=300(平方厘米)

师:如果我们知道正方形边长为30厘米,它的面积是多少?每个三角形的面积又是多少呢?为什么?

生2:正方形的面积是30×30=900(平方厘米)

每个三角形的面积是900÷2=450(平方厘米)

师:如果我们知道平行四边形的底为40厘米,高为20厘米,它的面积是多少?每个三角形的面积呢?为什么?

生3:平行四边形的面积是40×20=800(平方厘米)

每个三角形的面积是800÷2=400(平方厘米)

【设计意图】:通过动手操作,既做到复习旧知,又让学生初步理解三角形的面积与平行四边形之间的联系,为新知的探索做好铺垫。

5、 引出课题。

师:看来今天我们班的同学很乐意表现自己,老师真为你们而高兴。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。

【设计意图】:从不会计算面积的图形中揭示课题,激发学生的探究兴趣。

6、板书课题:三角形的面积

二、自主探索,得出公式

1、玩游戏,小组内交流问题。

师:刚才同学们玩了一次折一折的游戏,想不想再继续玩?(想)好,现在我们再来玩一个。请听好要求:拿出信封里面的学具,从中找出两个形状、大小完全一样的三角形拼一拼,看你能发现了什么?同时在拼时要思考以下几个问题:

(课件出示以下问题)

A、两个完全一样的三角形能拼出什么图形?

B、拼成图形的面积你会算吗?

C、拼成的图形与原来每一个三角形有什么联系?

(学生在小组里动手拼一拼,并相互交流以上问题)

【设计意图】:给学生留出足够的空间,发挥学生的主观能动性和合作精神,自主探索三角形的面积的公式。

2、学生代表上台演示汇报(2名学生,1人汇报,1人演示)

生1边演示,生2边汇报:

我们用2个完全一样的锐角三角形拼成了一个平行四边形,拼成的平行四边形的面积=底×高,每一个锐角三角形的面积是这个平行四边形面积的一半,所以一个三角形的面积=底×高÷2。

师:哦!原来是这样!同学们,你们明白了吗?请把掌声送给刚才这两位小老师。

师:刚才这个小组是用两个完全一样的锐角三角形来拼组的。你们还有其他新的发现吗? (寻找用直角三角形拼组的小组代表汇报)

(学生汇报的过程略)

师:汇报得真好!还有吗?

(点名用钝角三角形拼组的小组代表汇报)

(学生汇报的过程略)

【设计意图】:让各组学生口头表达自己小组的推导过程,锻炼学生整理思维、理顺思路的能力和口头表达能力。

3、根据学生的汇报,老师小结。

(每一种拼组学生汇报后都贴在黑板上。在老师小结时,应故意把其中的一个三角形拿掉,并画虚线表示。)

师:看来不管是锐角三角形、直角三角形,还是钝角三角形,只要两个完全一样的三角形就能拼成一个平行四边形,其中一个三角形的面积是拼成的平行四边形面积的一半。

追问:是不是任意一个三角形面积是任意一个平行四边形面积的一半?

(师任意拿起一个三角形和不等底等高的平行四边形的纸板,让学生对比进行引导) 生:不是。三角形的底和高必须与平行四边形的底和高相等时才对。

同学们现在说的很有道理,我们再来回忆一下刚才大家拼图形的过程。

老师板书:

三角形的面积是与它等底等高的平行四边形面积的一半。(板书)

师:看来,我们通过玩一玩,拼一拼,知道了怎样求一个三角形的面积了。那谁来说一说三角形的面积的计算公式是什么?

生:三角形的面积=底×高÷2(老师板书)

师追问:同学们,老师有点不明白,为什么写这个公式时用三角形的底乘高呢?“底×高”表示什么意思?为什么要“÷2”?

生:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为一个三角形的面积是拼成的平行四边形面积的一半,所以要“÷2”。

(学生加深对三角形面积计算公式的理解后,生齐读公式)

【设计意图】:通过小结追问,让学生更进一步对三角形的面积=底×高÷2的理解,为下一步解决实际问题做好充分的准备。

师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的字母公式是什么?

生:s=ah÷2(师板书)

4、介绍教材P85页的数学知识。

师:同学们,你们知道吗?今天我们一起动手推导出来的三角形的面积计算公式,20xx多年以前,我们的祖先就已经发现了,请看屏幕。(多媒体出示P85页的数学知识)

师:同学们,我国古代数学家固然伟大。但是,老师觉得你们更了不起!他们年纪很大了才发现的,而咱们小小年纪不也找到三角形面积的计算方法了吗?来,把热烈的掌声送给咱们自己!(响起掌声)好,接下来我们是不是更有信心继续展示自我?(是)

【设计意图】:通过数学知识的介绍,渗透爱国主义思想教育,同时增强学生利用知识解决实际问题的信心。

三、回顾过程,总结方法

1、两个完全相等的三角形拼成一个平行四边形,三角形面积是这个平行四边形面积的一半,即:三角形面积=底×高÷2。

2、我们是把三角形转化成平行四边形来计算面积的,即利用旧知解决新问题。

四、学以致用,解决问题。

师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)

1、 计算生活中的三角形的面积

(1)计算红领巾的面积

师:老师这里有一条红领巾,(展示实物)如果想求它的面积有多少?需要知道什么条件? 生:需要知道三角形的底和高。

(课件出示例2)

红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

师:请同学们算一算。

(学生练习后讲评订正)

(2)计算三角形标志牌的面积

篇三:三角形面积的计算教学设计及反思

教学内容:人教版小学数学第九册第69—73页《三角形面积的计算》。

教学目标:

1、认知目标

经历三角形面积计算公式的探索过程,理解三角形的面积计算公式,掌握求三角形面积的计算方法。

2、能力目标

通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。同时学生通过自主探索学习活动,提高实际操作、自主探索能力及运用三角形的面积公式解决实际问题的能力。

3、 情感目标

在探索学习活动中,培养实践能力,培养学生主动参与学习活动的意识、合作意识和创新意识,体会数学问题的探索性,并获得积极的情感体验和成功体验。

教学媒体:多媒体课件、实物展示台等。

教学准备:剪刀、方格纸、长方形、平行四边形、各种不同类型的三角形等 。

教学过程:

一、 创设情景,引入探索。

师:同学们想不想到王老师生活的城市和学校的绿化带去参观一下?好,请跟我来!(点击课件出现各种形状的花坛其中包括三角形的花坛,最后画面定格在学生们测量花坛的情形中)咦?这些同学遇到了什么问题?原来他们想知道这些花坛的面积,那我们能不能帮帮他?

生:能(学生踊跃回答,但在回答三角形的花坛面积该怎样求时出现了疑问)

师:同学们想不想知道这个三角形花坛的面积啊?(想)那就得知道应该怎样求三角形的面积呀?我们这一节课就一起来探究这个问题好吗?(教师板书课题:三角形面积的计算)

[教学一开始,教师给学生提供了学校校园场景,让学生从场景中发现问题、提出问题,引出长方形、平行四边形的面积公式及计算方法,并让学生说说平行四边形面积公式的推导过程。当学生说出三角形花坛要求出三角形的面积时,很自然地引入了课题,激起了学生探究新知的欲望。]

二、自主探索,合作交流。

师:上一节课我们通过自主探索已经找出了平行四边形面积的计算方法,大家可以从中得到一些启发,这一节课我相信只要你们继续发挥自己的聪明才智就一定可以自己找到三角形面积的计算公式。

1、谈话启思。

师:请大家拿出你们课前所寻找到的你们认为实验需要的素材,自行确 定研究方案,希望同学们发挥自己的想象,可以拼,可以折,还可以摆。小组里的同学可以互相合作、讨论,看哪一些小组能找到三角形面积的计算方法。讨论结束之后我们将开一个现场发布会还要颁发小组和个人的“杰出发现奖”!

[让学生在课前寻找需要实验的素材,课中自行确定其研究方案,真正实现了根据学 生的需求进行教学,充分发挥了学生的主观能动性]

2、操作探索。

(1)小组合作探索、操作。

(2)小组交流。(学生积极踊跃的动手动脑,教师融入其中并适当给以启发)

3、开始现场发布会,展示学生的拼摆情况。

师:好,大家刚才的讨论热烈而认真,我看到很多小组都已经找到了三 角形的面积计算方法那我们就来现场发布吧!哪个小组先来把你们的成果展示给大家?好,你们先来。(学生在实物展示台上进行展示)

生:我们小组是用数方格的方法找到三角形的面积。

师:那你们是如何数的呢?

生:方格纸上每一格代表一平方厘米,不满一格的按半格数,所以我们数 出这上面的三个三角形面积都是24平方厘米。

师:恩,可以,数方格也是一种方法,让我们来看一下电脑博士是怎么说 的?(点击课件,通过动画展示数方格的过程)数的很正确!哦?别的小组有不同意见?

生:我们认为这种方法太麻烦!如果三角形面积再大一点的话就不好使用 了。

师:这么说你们有更好的方法?好先请这一组的同学先上位,你们来展一 下你们的成果,怎么样?

生:好,我们拿的是两个完全一样的锐角三角形

师:你们怎么知道它们完全一样呢?

生:因为如果把它们叠在一起的话,会发现它们完全重合,然后我们将其 中的一个三角形进行旋转,会拼成一个平行四边形。

师:哦!你们真善于发现!那你们的结论是什么呢?

生:我们还发现这个拼成的平行四边形的底等于这个锐角三角形的底。高 等于这个三角形的高。因为每个锐角三角形的面积等于拼成的这个平行四边形面积的一半。平行四边形的面积=底×高,所以这个锐角三角形的面积=底×高÷2

师:哇,你们说的太好了!老师一定要拥抱一下你们!我们一起来看看电 脑博士是怎么说的?(课件演示整个重合→旋转→平移的过程,并说出推导过程)恩,和电脑博士说的一样,你们真不简单!老师要颁发给你们一个杰出发现奖!同学们为他们鼓掌祝贺吧!并把你们的成果贴在黑板上。其他小组也要来展示,好,你们小组来。

生:我们用的是两个完全一样的钝角三角形,也可以拼成一个平行四边形, 推导过程跟上一组一样,我们的结论是钝角三角形的面积=底×高÷2

师:好的,我们来看一下电脑里有没有这种方法?(课件演示)你们的方 法也很好。

生:我们小组是用两个完全一样的直角三角形也可以拼成一个平行四边 形,我们的结论是直角三角形的面积=底×高÷2

生:我们小组用的同样是直角三角形,但我们拼成的是一个长方形。这个 拼成的长方形的长等于三角形的底,长方形的宽等于三角形的高,所以直角三角形的面积=底×高÷2,并且我们还发现如果我们用两个完全一样的等腰直角三角形还可以拼成一个正方形,但结论也是一样的

生:我们小组是用一个平行四边形。沿着对角线将它分成两个完全一样 的三角形,这一个三角形的面积=底×高÷2

生:我们是用一个长方形沿着对角线将它分成两个完全一样的 直角三角 形,结论也是三角形的面积=底×高÷2

[点评:教师放手让学生去发现,并让学生充分发表自己的观点,各抒己见,学生们的 积极性已经完全被调动起来了。教师在课堂上,及时点拨、鼓励学生,学生的个性得到了充分的张扬,创造思维能力也得到了很好的培养。]

师:好,同学们你们真了不起!找到了这么多的方法,如果大家觉得还有

什么好办法,我们可以在下一节实践活动课继续讨论。让我们来一起看看黑板上大家的研究成果吧!我们发现两个完全一样的三角形可以拼成一个平行四边形,(将平行四边形的贴图贴在黑板上)而平行四边形也可以分成两个完全一样的三角形(将三角形的贴图贴在黑板上)这种方法在数学上叫做转化法

板书:平行四边形的面积=底×高 三角形的面积=底×高÷2 如果用字母S表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?(板书:S=ah÷2)

3、评价体验。

师:你们通过自己的努力找到了三角形面积的计算方法,老师也为你们 自豪!瞧,连智慧姐姐也来到了我们的课堂,(动画演示)她带来了一些问题想考考大家,你们愿不愿意接受这样的挑战?

生:愿意!

四、实践运用,拓展创新。

1、 先指出下面每个三角形的底和高,再分别算出每个三角形的面积。

2、 根据题中所给的条件,你能算出下面哪个三角形的面积?

3.先指出下面每个三角形的底和高,再分别算出它们的面积。

三角形的面积教学设计2

教学内容

苏教版九年义务教育六年制小学数学第八册P47—49三角形的面积,“练一练”及练习十第1—3题

教学目标:

1、 理解和掌握三角形的面积计算公式。

2、 通过操作、观察、比较,进一步发展空间观念,提高分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重、难点

理解和掌握怎样用两个完全一样的三角形转化成平行四边形,推导出三角形的面积计算公式。

教具学具准备:

1、 若干个完全一样的按比例放大的锐角三角形、直角三角形、钝角三角形。一套多媒体课件。

2、 每个学生准备一个长方形、两个平行四边形,一把剪刀。

一、导入课题:

1、师:同学们,今天我们要学习三角形的面积,板书:三角形的面积),看到课题,你想知道什么?

[可能出现:a、三角形面积计算公式是什么?b、三角形面积是怎样推导出来的?c、学三角形的面积有什么作用?]

2、解决方案:

师:要想知道三角形的面积怎样求,你想用什么方法来研究?你是怎么想到的?

(前面我们刚学过平行四边形面积的推导,是把平行四边形通过分割、平移、拼补转化成长方形研究的,所以我想到了转化的方法。板书:转化)

师:今天这节课让老师陪着大家运用转化的方法研究三角形的面积。

[评析:谈话式导入,学生看课题提出自己想知道的问题,参与了课堂学习目标的制定。课堂导入找准教学起点,沟通了新旧知识的联系,让学生明白本课的学习也是运用转化的`方法进行研究,激发了学生的学习兴趣,调动了学生的情感,为新知的学习打下了基础。]

二、新授

(一) 实验一:剪

1、师:下面让我们做几个实验,好不好?

(学生拿出准备好的一个长方形,两个平行四边形。平行四边形上画好底和高。)

2、(1)师:请大家拿出准备好的三个图形,平放在桌上,用剪刀沿虚线把它们剪开,剪开后一对一对的放在一起。(标上1、2、3号)

(2)反馈。师:你沿虚线把平行四边形剪开,得到了什么图形?(让学生把得到的两个三角形举给大家看。)师:其他的两个平行四边形剪开后能得到两个三角形吗?

(3)师:通过刚才的实验我们知道一个平行四边形可以分成两个三角形,这两个三角形大小、形状怎样?你怎么知道的?(学生演示重合的过程)

师:重合了,在数学上叫“完全一样”(板书:两个完全一样)

师:现在你能用“完全一样”说一说我们剪到的三角形吗?(学生说1号是两个完全一样的三角形,2号、3号是两个完全一样的三角形)

学生演示重合过程,课件演示剪、重合的过程。

师:谁能说一说根据刚才的实验,你想到了什么?

小结并出现字幕:一个平行四边形可以分成两个完全一样的三角形。

(4)师:这两个三角形与原来平行四边形面积相等,(课件演示两个完全一样的三角形拼成平行四边形的过程)其中一个三角形的面积和原来平行四边形的面积有什么关系?(课件闪动演示,学生回答,出现字幕:其中一个三角形的面积等于这个平行四边形面积的一半)

师:谁能完整地说一说,通过刚才的实验,你得出什么结论?看字幕说:一个平行四边形可以分成两个完全一样的三角形。其中一个三角形的面积等于这个平行四边形面积的一半。

说一说1号、2号、3号各是什么三角形?(板书:锐角三角形、直角三角形、钝角三角形)

[评析:学生自主探索,动手实践。通过剪一剪、比一比、议一议,使学生多种感官积极参加学习活动,理解“一个平行四边形可以剪成两个完全一样的三角形,其中一个三角形的面积等于这个平行四边形面积的一半。”为学习三角形的面积指明了思维的方向。]

三角形的面积教学设计3

一、教学内容:人教版小学五年级上册教科书P91内容及P92内容。

二、学习目标:

知识与技能:探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,从而发展学生的空间观念和初步的推理能力。

情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

三、教学重难点:

教学重点:探究并掌握三角形的面积计算公式,能正确计算三角形的面积。

教学难点:理解三角形面积计算公式的推导过程。

四、教学准备:

课件、三角形纸片、剪刀等。

五、教学过程:

一、复习引入

亲爱的同学们,我们既熟悉,又让我们感到神秘的数学丰富着我们对世界的认识,数学中的数,让我们对生活中的事物的有了量的认识,而形则描绘出了我们美丽世界中物的形状。

让我们一起回忆一下,我们学过哪些图形的面积?它们是如何计算的?

其中平行四边形的面积是我们上节课学习的。谁来说说我们是怎样推导出平行四边形面积的计算公式的?

通过割补等方法把求新学习的平行四边形的面积转化为求已学过的图形的面积?回想一下平行四边形的面积和它的什么有关?它的面积公式是?S=ah

今天就让我们一起来学习这些平面图形中的三角形的面积。谁来说说我们都学过有关三角形的哪些知识?一起回顾一下三角形的底和高。猜一猜它的面积可能跟什么有关呢?我们能否也通过把它也转化成我们学过的图形来研究呢,让我们一起探究它的面积吧。

二、新课探究

请同学们通过操作手中的图形(拼一拼、折一折或者剪拼的方法,看是否把它也转化成我们学过的图形,进而得到三角形的面积公式?)看是否能求出三角形的面积计算公式。

请先看操作要求。

操作要求:

1.前后两排4人小组开展活动,先商讨怎么操作可以求出三角形的面积。

2.按照商讨的方案,动手操作,验证商讨方案。

3.根据操作过程,组内说清楚怎么操作的,怎么得到三角形的面积计算方法。

现在请带着这样几个问题开始操作吧。

问题:

1.你们用两个怎样的三角形拼图?能拼出什么图形?

2.拼出的图形的面积你会算吗?

3.拼出的图形与原来的三角形有什么联系?

请各小组选派一名同学来说一说。

让学生按照问题去说,一边说一边指着图形。

现在的长方形的长和原来的三角形的底有什么关系?现在的长方形的长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中长和底相等,宽和高相等。

拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。

拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。再次让学生感受拼成的平行四边形和三角形底和高之间的关系。

拼成的正方形的边长和原来的三角形的底有什么关系?现在的正方形的另外一条边长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中一条边长和底相等,另外一条边长和高相等。

同学们那你们现在能得出三角形的面积计算公式吗?

大家有说三角形的面积公式为底×高÷2,也有人说为长×宽÷2,还有人说是边长×边长÷2,同学们你们觉得用哪个更合适呢?

这里长方形、正方形和平行四边形之间是什么关系?是的,它们是特殊的平行四边形,所以三角形的面积公式应该是底×高÷2,用字母表示为:S=ah÷2。

同学们现在你们知道三角形的.面积该怎么计算了吗?

那现在老师考考大家。

三、巩固练习

请同学们认真审题,仔细计算,这个三角形的底和高分别是几?它的面积应该怎么算?看看谁算得又对又快。

同学们你们看,这是代表我们是少先队员的红领巾,它是什么形状?那它的面积你会计算吗?大家快速计算。

同学们真棒,会计算红领巾的面积了。

看来大家掌握地还不错,那同学们老师再考考大家一点简单的。

二.我会填

(1)、一块三角形草地,底边是3.6米,高是5米,它的面积是多少平方米?

(2)、一个三角形的面积是16平方厘米,与它等底等高的平行四边形的面积是()平方厘米。

三.我是小法官。(对的打“?”,错的打“×”)

(1)两个直角三角形一定可以拼成一个长方形。

(2)两个三角形的面积相等,形状一定也相同。

(3)一个三角形的底不变,高扩大到原来的3倍,面积也扩大到原来的3倍。

同学通过刚才的练习,你认为在求三角形的面积时需要注意什么呢?

四、课堂小姐

同学们,通过这节课的学习你有什么收获?

同学们如果只有一个三角形,你能通过什么方法求出它的面积公式呢?老师这里还有一些方法,你们想知道吗?大家请看。

同学们你们看一个问题可以用不同的方法去解决,老师希望同学们以后碰到问题,也可以勤思考,用不同的方法去解决。

今天的课就上到这,同学们再见。

六、布置作业:数学课本第93页习题。

七、板书设计:三角形的面积

学生作品展示

三角形的面积公式:S=ah÷2

教学反思:在本节课教学中,刚开始引入回顾平行四边形学生都很积极地参与其中,对于新课内容在讲的过程中,在小组探讨的过程中,学生大部分都积极地参与到讨论中,在结论展示的过程中,因为第一个孩子对分发的图形是什么有点不清楚,所以在讲述中出现了问题,孩子也一下紧张起来,后面的讲述就有点少,对于等底等高的渗透地不够深入,后期练习中需要加强。

三角形的面积教学设计4

教学内容:

人教版五年级上册第五单元第84~87页内容

教学目标:

1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化思想的价值,发展学生的空间观念和初步的推理能力。

3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:

探索并掌握三角形的面积公式,能正确计算三角形的面积。

教学难点:

理解三角形面积公式的推导过程。

教学准备:

多媒体课件、三角形学具。

教学过程:

一、创设情境,引出课题

课件出示一个平行四边形。

师:这是什么图形,你会计算它的面积吗?说一说怎么算。

根据学生的回答,板书:平行四边形的面积=底×高

师:你能把这个平行四边形分成两个完全一样的三角形吗?该怎么分?

学情预设:学生一般有以下两种分法:

师:现在请你拿出自己准备好的平行四边形,我们来验证一下。用刚才的方法画一画、剪一剪、比一比,看看这两个三角形是否完全一样?

学情预设:学生动手操作,教师巡视指导,发现:剪下来的两个三角形是完全一样的。

师:假如这个平行四边形的面积为40平方厘米,那么其中一个三角形的面积是多少?(20平方厘米)

师:为什么?(剪下的两个三角形完全一样,就说明三角形的面积是平行四边形的一半)

师:刚才我们借助已知的平行四边形的面积,知道了三角形的面积。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。

【设计意图】:

从不会计算面积的图形中揭示课题,激发学生的探究兴趣。

板书课题:三角形的面积

二、自主探索,得出公式

1、动手实验。

师:同学们,老师已经给每组同学的学具袋中准备了三角形学具,请你们选择合适的三角形摆一摆,推导三角形的面积计算公式,比一比,哪一组想到的方法最多。

学情预设:学生动手实验,教师巡视指导,有前面的例子做铺垫,学生自然而然会想到用两个完全一样的三角形来拼。拼出的图形有三角形、长方形和平行四边形。选出拼成长方形和平行四边形,这两种是已经会计算面积的图形。把三角形转化成已学过的平行四边形、长方形或正方形来推导三角形的面积计算公式。

【设计意图】:

给学生留出足够的空间,发挥学生的主观能动性和合作精神,自主探索三角形的面积的公式。

2、学生代表上台演示汇报

师:你是如何推导出三角形的面积公式的?谁来给我们演示?

演示一:把两个完全一样的三角形拼成平行四边形。(如下图)

师:观察这些平行四边形,它们有什么共同特点?我们把拼成的平行四边形和原来的三角形作比较,你能发现平行四边形的底和高与三角形的底和高有什么关系吗?那么三角形的面积可以怎么计算呢?

根据学生的回答,教师板书如下:

三角形的面积=平行四边形的面积÷2=底×高÷2

展示二:把两个完全一样的直角三角形拼成长方形或正方形。(如下图)

师:观察图形,我们把拼成的长方形或正方形与原来的三角形作比较,你能发现它们之间的关系吗?请你根据你拼成的图形,推导出三角形的面积计算公式。

根据学生的回答,教师板书如下:

三角形的'面积=长方形的面积÷2=长×宽÷2=底×高÷2

师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的字母公式是什么?

三、学以致用,解决问题。

师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)

1、计算生活中的三角形的面积

(1)计算红领巾的面积

师:老师这里有一条红领巾,(展示实物)如果想求它的面积有多少?需要知道什么条件?(需要知道三角形的底和高)

(课件出示例2)

红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

师:请同学们算一算。

(学生练习后讲评订正)

(2)计算三角形标志牌的面积

师:我们经常见到类似以下标志的标志牌(课件出示如下图),你知道这个标志牌的面积吗?谁口算一下。(4×3÷2=6(平方分米))

师:都是这样做的吗?为什么不用3.2×3÷2呢?

(因为3.2分米不是3分米对应的底。)

师:如果与3.2分米对应的高是3.75分米(课件出示)还可以怎样列式?

(3.2×3.75÷2)

师:通过这道题的解答,你明白了什么?

师:对啊,我们要计算三角形的面积时必须找准相对应的底和高,才利用三角形面积的计算公式来计算。

(3)认识道路交通警示标志。

师:请看屏幕。(多媒体出示)

师:你们认识这些交通警告标志吗?

(学生回答后,老师边小结,课件边出示各标志的含义)

师:同学们,我们示范小学校门口到邮政局这段路,在放学时经常出现交通混乱,为了改变这种状况,交警大队准备用铁皮制作其中两块这样警示牌,你能算出需要多少铁皮吗?(课件同时出示标有底是9分米,高7.8分米的数据的图形)

(学生练习后讲评订正,订正时主要关注”用简便方法解答”的小结。)

(4)画面积相等的三角形。

师:看到同学们这么积极,小精灵也给大家带来了问题,请大家看屏幕(课件出示)

师:上图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?

(学生打开书87页,在书中画一画,完成第6题)

师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?(无数个)

师:通过画这样的三角形,你发现了什么?

生:三角形的面积与底和高有关,与形状无关。

【设计意图】:

通过分层次的解决实际问题的练习,既巩固了学生对三角形面积计算公式的理解应用,又使学生感受到三角形面积公式的变形应用,同时对学生进行交通安全教育。〕

四、课堂小结

师:本节课你学到了什么新知识?你觉得计算三角形面积时应注意什么?

(学生汇报:1、三角形的底和高必须是相对应的一组。2、别忘了除以2.)

五、布置作业:

课本P86--87页第2、4、5题

三角形的面积教学设计5

一、教学内容

《义务教育教科书(五·四学制)·数学(四年级下册)》22~23页。

二、教学内容

1、掌握三角形的面积计算公式,并能正确计算三角形的面积。

2、经历探索三角形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。

3、能运用三角形的面积计算公式解决简单的实际问题,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。

三、教学重点

探究三角形面积的计算方法。

四、教学难点

把三角形转化成平行四边形,探究平行四边形与三角形之间的关系,推导三角形面积的计算公式。

五、教学准备

三角形卡片、多媒体课件。

六、教学过程

(一)创设情境,提供素材

师:同学们,这节课,让我们一起走进生产车间,看看工人制作标志牌的场景。

课件出示图片。(见图1)

师:你想提出什么数学问题?

预设:制作这个标志牌需要多少平方分米的铝皮?

师:标志牌是一个什么图形?

预设:三角形。

师:那么求这块标志牌的面积也就是求什么的面积?

预设:求三角形的面积。

师:今天我们就来研究三角形的面积。

教师适时板书:三角形的面积。

设计意图:

从学生容易感兴趣的情境问题入手,激发学生的好奇心、求知欲,使学生积极投入到探索性的数学活动中。

(二)积极思考,引导猜想

师:三角形的面积是什么?谁来猜猜看?

预设1:底乘高。

预设2:三边相乘。

师:那你们想怎么来研究它?

预设:把它转化成以前学过的图形。

师:你怎么想到用转化?

预设1:因为三角形没学过,转化成以前学过的图形就能研究了。

预设2:我们上节课学习平行四边形的时候用的就是转化的思想。

师:转化后再怎么研究?

预设1:看转化后的图形和原来三角形之间的关系。

预设2:根据关系推导出三角形面积计算公式。

预设3:我们研究平行四边形的时候就是这样研究的。

师:你们真是很有想法!想到用研究平行四边形面积的方法来研究三角形的面积。老师帮你们把你们提出的这个研究思路梳理一下。

设计意图

学生经过大胆地猜测,好奇心被激发起来,自觉运用知识进行迁移,由于之前刚刚学完平行四边形的面积,学生充分经历的推导过程,学生自然会想到“转化”的数学思想方法。

(三)操作验证,总结公式

师:在学习材料包里有好多三角形,下面我们来同桌合作,根据这个思路来研究研究看,开始吧。

学生活动,教师搜集不同素材。

师:哪个小组愿意先上来汇报一下你们的研究成果?

小组为单位上台汇报锐角、直角、钝角三角形的研究成果。

师:老师发现,你们的想法不谋而合,都是把三角形转化成了平行四边形。在操作的时候,我们可以将两个完全一样的三角形重合,其中一个绕顶点旋转180度后平移,就能得到平行四边形。

课件适时展示旋转过程。

师:那是不是所有的三角形都有这样一个关系呢?

预设:按角分,三角形可以分成这三类,经过研究我们发现这三类三角形都是与它等底等高的平行四边形面积的一半。这三类三角形都符合,我们就不需要再验证了。

师:那我们可以得到结论了吗?

学生回答,教师适时板书:三角形的面积=底×高÷2

师:如果三角形的'面积用S表示,底用a表示,高用h表示,怎么用字母来表示?

学生回答,教师适时板书:S=ah÷2

师:对于三角形的面积公式,你有什么要问的吗?

预设:为什么要除以2?

师:哪位同学能帮着回答一下?

预设:我们是用两个完全一样的三角形拼成的平行四边形,那么一个三角形的面积就要用平行四边形的面积除以2。

设计意图

通过学生大胆猜测,选择图形—动手操作—观察、交流、讨论—汇报得出公式的系列过程,可以使学生很自然地产生,一步步向前探索的需要。学生既理解公式的来龙去脉,又实实在在经历探究与发现的全过程,既让学生掌握探索问题的一般方法,又使学生感受到数学方法的内在魅力。

(四)应用公式,解决问题

1、回归情境,解决问题。

师:现在你能解决这个问题了吗?

学生运用公式进行解答。

2、求下面的几个三角形的面积。

3、填空。

(1)平行四边形的面积是20平方米,与它等底等高的三角形的面积是( )平方米。

(2)一个三角形花坛底长10米,高是底的一半,花坛的面积是()平方米。

4、判断改错。

师:小马虎同学写了一篇数学日记,咱们来看看他写的怎么样?

课件出示:今天,我学习了新的知识:三角形的面积。我知道了三角形的面积是S=ah÷2,我认为两个三角形一定可以拼成一个平行四边形。这是一种转化的数学思想。我还知道了三角形的面积是平行四边形的面积的一半。瞧!我学习得怎么样!

学生发现错误。

5、数学史介绍。

课件出示20xx年前《九章算术》里面三角形面积的研究方法。

师:如果只有一个三角形,你还能想办法研究出三角形的面积公式吗?有兴趣的同学我们课下来研究研究。

设计意图

练习设计层次清晰,既有基础练习,又有拓展练习。特别增加了数学史的内容,可以开拓学生的视野,也给学有余力的学生留下了继续探索的空间。

三角形的面积教学设计6

教材分析三角形的面积计算直接要求学生将三角形转化为已学过的图形推导出面积计算公式。

学情分析是在学生掌握图形的特征和长方形、正方形、平行四边形面积的计算的基础上学习的。

教学目标

1、在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。

2、通过操作、观察和比较,使学生认识转化的思想方法在研究三角形面积时的运用,发展学生的空间观念。

3、培养学生的分析、综合、抽象、概括能力和运用转化的方法解决实际问题的能力。

教学重点

在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。

教学难点

培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学准备教师:红领巾,直角三角形、锐角三角形和钝角三角形硬纸片各一对。

学生:直角三角形、锐角三角形和钝角三角形硬纸片各一对,尺子,练习本。

教学过程

一、复习准备:

1、教师:同学们,前面我们已经学了哪些平面图形的面积计算公式?

谁能说说长方形和平行四边形的面积计算公式是怎样的?随着学生的回答板书:

长方形的面积=长×宽。

平行四边形的面积=底×高。

2、出示红领巾。

(1)教师:这条红领巾是什么图形,它的面积是多少?你能猜一猜吗?

(2)教师:同学们猜了那么多答案,哪个是正确的呢?我们需要计算后才能作出正确的判断。今天这节课,我们就一起来研究三角形面积的计算。板书课题:三角形面积的计算。

二、合作探究:

1、出示直角三角形、锐角三角形和钝角三角形纸片,提问:这3个三角形分别是什么三角形?

2、探究三角形面积计算公式。

教师:我们学习过哪些求面积的方法?(数方格和转化的.方法)

教师:同学们,那就用你喜欢的方法推导三角形面积公式。引导学生运用所学的方法探究三角形面积计算公式,并组织学生分组合作。

①如果是用数方格的方法,那就在方格纸上进行计算。(教师巡视,对个别学生进行指导)

②如果是用拼摆转化的方法,那请同学们拿出老师为你们准备的三角形进行计算。组织学生开展操作活动。(教师巡视,对个别学生进行指导)

三、探讨交流。

1、组织全班学生进行交流,说明推导公式的过程。

2、让数方格小组说明推导的公式及过程。(我们先计算出三个图形的面积,再分别量出它们的底和高,发现它们的面积都可以用底×高÷2表示。所以我们小组觉得三角形的面积公式应该是:底×高÷2。

3、让转化小组说明推导的公式和过程。(我们将两个完全一样的锐角三角形拼成一个平行四边形,其中三角形的底和高分别是平行四边形的底和高,因为平行四边形的面积公式是底×高,而这个平行四边形是由两个相同的三角形拼成,所以三角形的面积公式是:底×高÷2。钝角三角形和直角三角形的面积公式也一样。

4、在讲台上演示用两个相同三角形推导的过程,让学生进一步理解上述同学和推导思路,看清楚转化的过程。

5、引导转化小组学生总结三角形面积的计算公式,同步板书:

两个相同的三角形=一个平行四边形。

平行四边形的面积公式=底×高。

三角形的面积公式=底×高÷2。

用字母表示公式:s=ah÷2。

6、教学例题2。

四、巩固练习。

(1)解答练习题"做一做"。之后教师指定学生回答,并集体订正。

(2)回顾:这节课我们共同研究了什么?怎样求三角形的面积?三角形的面积计算公式是怎样推导出来的?

三角形的面积教学设计7

教学内容:第75页及练习十八1-4题

教学要求:

1、理解三角形面积公式的推导过程,并能正确地运用公式计算三角形的面积。

2、通过教学培养学生分析、推理能力和实际操作能力,发展学生的空间观念。

3、在指导操作过程中,引导学生运用转化的方法探索规律。

教学重点:三角形面积计算公式的推导。

教学难点:理解公式中除以2的道理。

教具:准备三种类型的三角形,每种2个完全一样,投影片若干。

学具:完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。

教学过程:

一、复习铺垫

1、提问:谁能说说长方形、平行四边形的面积计算公式是怎样的?

2、(幻灯出示)口答:计算图形面积

二、导入新课

幻灯出示一个三角形

提问:它是一个什么图形?

它的底和高分别是多少?

它的面积怎样算呢?板书课题:三角形面积的计算。

三、讲授新课

(一)、用数方格的方法计算三角形的面积。

幻灯出示课本第75页上面的图,教师说明不够一格的都按半格算。让学生说出它们的底和高各是多少?面积是多少?

得出用数方格的方法计算三角形的面积不准确,又很麻烦。

质疑:怎样计算三角形的面积呢?

(二)、通过操作总结三角形的'面积计算公式。

1、从直角三角形推导。

我们能不能把三角形转化成已经学过的图形,再进行计算面积呢?

(1)让学生动手拼,教师将学生拼出的图形一一展示出来。

(2)这些图形中哪些图形的面积你们会算?

(3)每个直角三角形的面积与拼成的长方形和平行四边形的面积有什么关系?

教师重述:每个直角三角形的面积是拼成的长方形或平行四边形面积的一半。

2、从锐角三角形推导。

(1)让学生试拼,可以相互讨论。

(2)教师指导,突出旋转和平移。

(3)每个锐角三角形的面积与拼成的平行四边形的面积有什么关系?

教师强调:每个锐角三角形的面积是拼成的平行四边形面积的一半。

3、从钝角三角形推导。

(1)学生操作。

(2)每个钝角三角形的面积与拼成的平行四边形的面积有什么关系?

4、归纳总结规律。

通过以上实验可以看出:两个完全一样的三角形,不论是直角三角形、锐角三角形、钝角三角形都可以拼成一个平行四边形。大家想想:

(1)这个平行四边形的底与三角形的底是什么关系?高又怎么样?

(2)这个平行四边形的面积和三角形的面积有什么关系?

得出:三角形的面积=底×高÷2

(3)如果用S表示三角形面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式用字母怎么表示呢?

板书:S=ah÷2

(三)、运用面积公式计算三角形的面积。

1、出示数方格求面积图:谁能用公式计算方格图上的三个三角形的面积?三个三角形的面积为什么都相等?

2、出示例题让学生试做。

说一说计算三角形面积为什么要除以2?

3、看书质疑。

4、做一做书本第77页

四、课堂小结

提问:1、这节课我们主要研究什么?

2、求三角形的面积有几种方法?哪一种求面积的方法更方便,更准确?

3、要求三角形面积必须知道什么?怎样求?

五、巩固练习

练习十八1、3(1)

六、课堂练习

三角形的面积教学设计8

教学内容:九年义务教育六年制小学数学教科书第九册69页至71页。

教学目标:

1.通过指导实际操作,帮助学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积;

2.使学生明白事物之间是相互联系,可以转化和变换的。

3.通过交流,观察、比较,培养学生发现问题、提出问题、分析问题、解决问题的能力,发展学生的空间观念。

教学重点:探究三角形面积公式的推导过程,掌握和运用三角形面积计算公式进行计算。

教学难点:理解三角形面积计算公式。

设计特色:针对本课的知识特点,课前设计目的性明确、可操作性强的前置性作业,充分调动学生学习的热情,提高课前预习的效果,为成功的课堂教学做好铺垫;在课堂上,运用小组交流的学习方式,每个成员都有机会展示自己,小组交流后再进行全班的汇报,根据学生汇报的情况教师有目的地板书,然后引导学生观察、比较,进而推导出三角形的面积计算公式。

教学过程:

一、导入:

1、平行四边形面积计算公式是怎样推导的?

总结:把没学的图形转化成已经学过的图形从而推导出面积计算公式。

2、今天,我们也用同样的方法推导三角形面积计算公式,板书课题。

二、讨论

小组交流课前小研究。

三、推导

1、汇报课前研究的方法,老师根据学生的'汇报有目的地板书。

2、推导三角形面积计算的公式。

四、应用

1、教学例1

2、强调格式

五、练习

1、下面平行四边形的面积是12平方厘米,斜线部分三角形的面积是多少?

(口答,并说出理由)

2、判断:

(1)三角形的面积是平行四边形面积的一半。()

(2)三角形的高是2分米,底是5分米,面积是10分米。()

3、说出求下面三角形的面积

板书设计:

课前小研究

研究者:班级:

前言:我们已经学过用转化的方法,把平行四边形转化成已经学过的图形,从而推导出它的面积计算公式,请你想一想:能否也把三角形转化成我们已经学过的图形,从而研究三角形面积的计算方法?

(可以在学具盒或在附图中选材料)

1、我用的材料是:

我的做法(文字或画图表示):

我的结论:

2、我用的材料是:

我的做法(文字或画图表示):

我的结论:

3、我用的材料是:

我的做法(文字或画图表示):

我的结论:

4、我用的材料是:

我的做法(文字或画图表示):

我的结论:

附图2

材料一

材料二

三角形的面积教学设计9

教学内容:

人教版义务教育课程标准实验教科书五年级上册第84—86页.

教学目标:

1.知识与技能:

(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题.

(2)培养学生应用已有知识解决新问题的能力.

2.过程与方法:使学生经历操作,观察,讨论,归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力.

3.情感,态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣.

教学重点:

探索并掌握三角形面积计算公式,能正确计算三角形的面积.

教学难点:

三角形面积公式的探索过程.

教学关键:

让学生经历操作,合作交流,归纳发现和抽象公式的过程.

教具准备:

课件,平行四边形纸片,两个完全一样的三角形各三组,剪刀等.

学具准备:

每个小组至少准备完全一样的直角三角形,锐角三角形,钝角三角形各两个,一个平行四边形,剪刀.

教学过程:

创设情境,揭示课题

师:我们学校一年级有一批小朋友加入少先队组织,学校做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题

(屏幕出示红领巾图)

师:同学们,红领巾是什么形状的(三角形)你会算三角形的面积吗这节课我们一起研究,探索这个问题.(板书:三角形面积的计算)

[设计意图:利用学生熟悉的红领巾实物,以及帮学校计算要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,从而将"教"的目标转化为学生"学"的目标.]

二,探索交流,归纳新知

1.寻找思路:(出示一个平行四边形)

师:(1)平行四边形面积怎样计算(板书:平行四边形面积=底×高)

(2)观察:沿平行四边形对角线剪开成两个三角形.

师:两个三角形的形状,大小有什么关系(完全一样)

三角形面积与原平行四边形的面积有什么关系

[设计意图:这一剪多问,学生在观察的基础上通过与平行四边形及面积的'比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,诱发了心理动机]

师:你想用什么办法探索三角形面积的计算方法

(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定,评价鼓励.)

师:上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的.大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢

(屏幕出示课本84页主题图让学生观察,引发思考)

接着出示思考题:

将三角形转化成学过的什么图形

每个三角形与转化后的图形有什么关系

[设计意图:学生由于有平行四边形面积公式的推导经验,必然会产生:能不能把三角形也转化成已学过的图形来求它的面积呢从而让学生自己找到新旧知识间的联系,使旧知识成为新知识的铺垫.]

2.分组实验,合作学习(音乐)

(1)提出操作和探究要求.

让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼,摆一摆或剪拼.

屏幕出示讨论提纲:

①用两个完全一样的三角形摆拼,能拼出什么图形

②拼出的图形与原来三角形有什么联系

(2)学生以小组为单位进行操作和讨论.

[设计意图:这里,根据学生"学"的需要设计了一个合作学习的程序,让学生分组实验,合作学习,为学生创设了一个自己解疑释惑的机会.]

教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学困生:你是怎样拼的能说一说你的拼法吗(若学困生含糊的,动画显示一个作好高的三角形,移出一个与它同样大小的三角形,再把这个三角形旋转,移动,和下一个三角形拼成一个平行四边形.如图,让学困生模仿练习)

三角形的面积教学设计10

学习内容:

第9页的例4、例5、及“试一试”、“练一练”练习二中相关题。

学习目标:

1、经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。

2、进一步体会转化方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

学习重点:

理解并掌握三角形面积的计算公式

学习难点:

理解三角形面积公式的`推导过程

学习过程:

一、先学探究

■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)

1、出示一个底是4分米,高是3分米的平行四边形。

这是一个什么图形?它的面积如何计算?

■学情预判:学生对三角形面积公式的推导过程可能有点困惑,这一点要加强教学。

二.交流共享

■后教预设:出示二个板块的挂图,通过讨论交流,解决问题。

【板块一】学习例4:

仔细观察这3个平行四边形,请说出如何求每个涂色的三角形的面积?

先自己想,随后在小组中交流。

你是怎样求出每个涂色的三角形的面积?

三角形与平行四边形究竟有怎样的关系?

三角形的面积应当如何计算?

【板块二】学习例5:

(1)出示例5:

用例5中提供的三角形拼成平行四边形。(注意:组内所选的三角形都要齐全)

(2)小组交流:

你认为拼成一个平行四边形所需要的两个三角形有什么特点?

(3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。

小组交流:如何计算一个三角形的面积?

从表中可以看出三角形与拼成的平行四边形还有怎样的关系?

得出以下结论:

这两个 的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成这个平行四边形的底等于 这个平行四边形的高等于因为每个三角形的面积等于拼成的平行四边形面积的所以三角形的面积=

(4)用字母表示三角形面积公式:

三、反馈完善

1、完成试一试:

2、完成练一练:

(1)先回忆拼得过程,再回答。(2)你是如何想的。

3.判断。

(1)两个形状一样的三角形,可以拼成一个平行四边形.……

(2)平行四边形面积一定比三角形面积大.……

(3)一个平行四边形与一个三角形等底等高,那么平行四边形的面积一定是三角形的2倍.………

(4)底和高都是0.2厘米的三角形,面积是0.2平方厘米…….

4.完成课本第17页第6题。

5、拓展练习

量出你的三角板(两个任选一个)的底和高,然后算出它的面积。

6、课外延伸:阅读第16页“你知道吗”

四、总结回顾:

通过今天的学习,你有什么收获?想要提醒大家注意什么?

三角形的面积教学设计11

教材简析:

“三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的平行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。

教学内容:

苏教版标准实验教科书《数学》五年级上册P15~P16的内容,三角形的面积。

教学目标:

1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;

3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重、难点:

重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。

教、学具准备:

CAI课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。

教学过程:

一、创设情境、导入新课

1、提出问题。

师:(出示一条红领巾)同学们,这是一条红领巾。它是什么形状的?那你们会计算三角形的面积吗?

2、揭示课题。

师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)

二、操作“转化”,推导公式

1、寻找思路。

师:是的,我们还不会计算三角形的'面积。那同学们想一想,开始我们同样不会计算平行四边形的面积,后来我们通过什么方法推导出了平行四边形的面积计算公式的呢?

师:对,我们用“割补”的方法把平行四边形“转化”(板书:转化)成了一个长方形,这样推导出了平行四边形的面积计算公式。那同学们,我们能不能把三角形也“转化”成我们已经学过的图形,从而推导出三角形的面积计算公式呢?

师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?

[应变预设:同学们根据已有的经验,一般会认为可以用这种方法,教师可以选择一种方法实际“割补”,让学生明白这种方法不好,需要寻找更好的方法。]

2、动手“转化”。

师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。

小组合作拼组图形,教师巡视指导。

[应变预设:可能有些同学不会拼组,教师可指导他们用旋转、平移等方法,把两个完全一样的三角形拼成一个平行四边形或一个长方形。]

师:拼好了吗?用这种拼一拼的方法能不能把三角形“转化”成已经学过的图形呢?谁来说一说,你们用这种方法把三角形“转化”成了什么图形?

[应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]

师:同学们,为什么有些小组拼成了一个平行四边形,有的小组却拼成了一个长方形呢?你们想想,这是什么原因呢?

[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]

3、尝试计算。

师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。

师:这个平行四边形就是由两个完全相同的三角形拼成的,它的底和高分别是多少?那么,其中一个三角形的底和高又分别是多少呢?

[评析:引导学生说出拼成的平行四边形和原来的三角形等底等高,为推导三角形的面积计算公式作铺垫。]

师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。

师:算完了吗?它的面积是多大?

师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。

[应变预设:在设法求三角形的面积时,可能有部分同学不明白三角形的面积和平行四边形面积之间的关系,不会计算。这时教师应引导学生明确每个三角形的面积是拼成的平行四边形面积的一半,计算三角形的面积可用平行四边形的面积除以2得出。]

师:同学们太了不起了,开动脑筋,已经算出了这个绿色三角形的面积。

师:现在请同学们看屏幕,(课件出示,如下图)你们会计算屏幕上这个蓝色三角形(底3cm,高2cm)的面积吗?算一算。

[应变预设:学生可能不会计算,教师可以引导学生观察,图中的虚线三角形,和蓝色三角形是完全一样的,它们也拼成了一个平行四边形。使学生明确3×2是这个平行四边形的面积,求这个三角形的面积还得除以2。]

师:同学们,你们太棒了!又计算出了一个三角形的面积。再看屏幕,(课件出示,如下图)你们还能计算这个三角形(底6cm,高4cm)的面积吗?

[评析:由清晰的由两个完全相同的三角形拼成的平行四边形,到由一实一虚的两个完全相同的三角形拼成的平行四边形,再到一个独立的三角形,面积计算逐步深入,层层推进,引导学生经历了由具象到抽象的过程,思维含量非常丰富。]

4、推导公式。

师:同学们,刚才大家已经尝试着求出了三个三角形的面积,大家都算得很好。那么现在你们能把三角形的面积计算公式写下来吗?先写一写,同桌同学再商量商量吧。

[应变预设:大多数的学生可能会说出“三角形的面积=底×高÷2”。教师应给以充分的肯定:你们推导出了三角形面积的计算公式!再引导学生说出推导的过程。]

5、理解公式。

师:同学们,老师有点不明白,为什么你们写这个公式时用三角形的底乘高呢?“底×高”表示什么意思呢?为什么还要“÷2”呢?

[评析:通过请学生帮助老师解困惑,加深学生对三角形面积计算公式含义的理解:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为三角形的面积是拼成平行四边形面积的一半,所以要“÷2”。这样既突破了教学难点,更加深了

学生对三角形面积计算公式的理解。]

6、用字母表示三角形的面积公式。

师:同学们,如果用a表示三角形的底,h表示三角形的高,S表示三角形的面积,你们会不会用字母表示三角形的面积公式呢?请写一写吧。

[评析:拼一拼、算一算、说一说、写一写……不知不觉中,同学们自己推导出了三角形的面积计算公式。学生自然地成为了学习的主人。]

师:同学们,你们知道吗?今天我们一动手起推导出的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看大屏幕。(课件出示如下图,课本P85页的数学常识。)

[评析:这样表面是介绍数学常识,但实际渗透了爱国思想教育。]

三、应用公式,解决问题

师:同学们,我们已经推导出了三角形的面积计算公式,现在我们就用三角形的面积计算公式解决一些实际的问题。这是刚才看到的那条红领巾,同学们,你们知道怎样才能求出做一条这样的红领巾要用多少红布吗?

师:对,要求做一条红领巾要用多少红布,实际是求这条红领巾的面积是多少?而要求这条红领巾的面积是多少?必须了解哪些数据呢?

师:那就请大家动手量一量它的底和高吧。

[评析:这里并没有直接给出红领巾的底和高,需要学生共同合作实际测量,培养了学生解决实际问题的能力。]

师:量完了吗?请大家算一算,看看做这样一条红领巾到底需要多少红布?

[应变预设:指导学生运用公式进行正确的计算,展示学生的算式,集体订正。]

四、联系生活,适当拓展

师:同学们,你们认识这些道路交通警示标志吗?(课件出示下面这些道路交通警示标志。)知道它们的具体含义吗?

师:交通标志对于维护交通安全有着重要的意义和作用。同学们,这些交通标志是什么形状的?

师:对,它们都是三角形的。(课件出示其中一个三角形标志的底和高,如下图)请大家算一算,这个标志牌(底9dm,高7dm)的面积大约是多少?

[应变预设:指导运用公式进行正确的计算,,然后集体订正。]

师:同学们,你们还能算出这三个三角形的面积吗?(课件出示如下图1:底3厘米,高4厘米;图2:底4厘米,高1。5厘米;图3:底2。5厘米,高2。8厘米)看谁算得又对又快!

四、全课总结,反思体验

教师:这节课你们学习了什么?有哪些收获?

[总评:这节课教师注重从学生已有的知识经验出发,并引导学生将“转化”的思想迁移到新知识的学习中,动手操作推导出三角形的面积公式,亲身经历了数学知识的形成过程,增强了学生学习数学的兴趣。整一节课,教师尽量把时间和空间让给学生,组织他们动手实践,引导他们自主探索,参与他们的合作交流,使学生真正成为了学习的主人。]

三角形的面积教学设计12

教学内容:

人教版义务教育课程标准实验教科书五年级上册第84—86页。

教材分析:

三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础、《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形,平行四边形和梯形的面积公式、学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生面临三角形面积计算公式的推导过程时,可以借鉴前面"转化"的思想,且为今后逐渐形成较强的探索能力打下较为扎实的基础、

教学目标:

1、知识与技能:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程

2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。

教学难点:

三角形面积公式的探索过程。

教具准备:

课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。

学具准备:

每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。

教学过程

一、复习旧知,导入新课。

1、我们学过求哪些图形的面积,计算公式是什么?

2、我们学校内有一平行四边形的花坛,底是5米,高是3米,学校领导要把这个花坛平均分成两份,分别种上不同颜色的花,该怎样分?每一块的面积是多少?请同学设计一下。

3、同学们,学校要为学校开学典礼准备30条红领巾,大队辅导员想请大家帮忙,算一算,需要多少布料?你们愿意吗?该怎样来计算呢?

师:是的,要先计算一条红领巾的面积,那么红领巾是什么形状的?你会计算它的面积吗?今天我们就来学习计算三角形的面积。板书:三角形的面积。

二、动手操作,探求新知。

1、 猜一猜。找关系

师:1、同学们,长方形的面积跟它的什么有关系?平行四边形的面积跟它的什么有关系?

生:和它的底和高有关。

2、那么,猜一猜,三角形的面积可能跟它的什么有关系呢?(学生可能说边、底、高)那么怎样来验证我们的判断呢?

2、 想一想。找关系

师:想一想,我们在推导平行四边形的面积时,用的是什么方法?那么,可不可以也用转化法把三角形转化成我们会求面积的.图形呢?

3、 拼一拼,摆一摆,比一比。找关系

师:请同学们拿出准备好的三角形,按照你的想法,和小组内同学一起拼一拼,摆一摆,折一折看可以把它转化成哪些我们会求面积的图形。

学生小组合作,拼摆图形。教师巡视,帮助学困生拼摆。

汇报。可能摆出正方形,长方形,平行四边形,

思考,这些图形有什么共同点?(都是平行四边形。)现在,你又有什么发现?

归纳:两个完全相同的三角形,可以拼出一个平行四边形。

师:那么,我们拼出的平行四边形、跟所用的三角形有没有关系呢?有什么关系呢?

引导学生答出,平行四边形的面积是三角形面积的2倍。板书:三角形的面积=平行四边形的面积÷2,那么,还有没有其它的关系呢?

4、 画一画,算一算。找关系,得结论。

师:请同学们画出平行四边形的一条高,你发现了什么?

生:平行四边形的高也是三角形的高,底也是三角形的底。

师:那么,我们刚刚得出的结论还可以怎样写?

三角形的面积=底×高÷2

用字母表示三角形的面积。

5、 应用公式,解决问题。

现在我们再来解决大队辅导员老师的问题吧。学生可能会束手无措,面面相觑于是,教师趁机疑惑不解地问:你们怎么还不解决问题啊?让学生自己说出,需要红领巾的底和高。

教师出示完整题目:一条红领巾的底是100厘米,高是33厘米,做30条这样的红领巾需要多少布料?

学生独立计算,集体订正。

三、练习巩固。

1、 独立完成85页做一做。

2、 完成86页练习的1、题。

3、 完成86页练习的3题。

4、判断下列说法是否正确。

(1)三角形面积是平行四边形面积的一半。( )

(2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平方米。( )

(3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )

(4)等底等高的两个三角形,面积一定相等。( )

(5)两个三角形一定可以拼成一个平行四边形。( )

5、求右图三角形面积的正确算式是( )

①3×2÷2 ②6×2÷2

③6×3÷2 ④6×4÷2

6、 学校准备在校门出口处两旁各建一块三角形交通警示标志牌,底是8分米,高是7分米,请帮忙计算需要多大面积的材料。(引导学生思考“两旁”的意思)。

四、拓展提高:

1、这节课,你有什么收获?还有那些不懂的地方?

2、如果只用一个三角形,你能通过剪,拼等方法推出三角形公式吗?

五、板书设计:

三角形的面积

三角形的面积=平行四边形的面积÷2

三角形的面积=底×高÷2

S=ah÷2

三角形的面积教学设计13

教学目标:

1.知识与技能:

(1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

(2)培养学生应用已有知识解决新问题的能力。

2.过程与方法:

使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3.情感、态度与价值观:

让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重点:

探索并掌握三角形面积计算公式,能正确计算三角形的面积。

教学难点:

三角形面积公式的探索过程。

教学关键:

让学生经历操作、合作交流、归纳发现和抽象公式的过程。

教具准备:

课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。

学具准备:

每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。

教学过程:

一、创设情境,揭示课题

师:我们学校一年级有一批小朋友加入少先队组织,学校做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题?

(屏幕出示红领巾图)

师:同学们,红领巾是什么形状的?(三角形)你会算三角形的面积吗?这节课我们一起研究、探索这个问题。(板书:三角形面积的计算)

[设计意图:利用学生熟悉的红领巾实物,以及帮学校计算要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,从而将“教”的目标转化为学生“学”的目标。]

二、探索交流、归纳新知

寻找思路:(出示一个平行四边形)

师:

(1)平行四边形面积怎样计算?(板书:平行四边形面积=底×高)

(2)观察:沿平行四边形对角线剪开成两个三角形。

师:两个三角形的形状,大小有什么关系?(完全一样)

三角形面积与原平行四边形的`面积有什么关系?

[设计意图:这一剪多问,学生在观察的基础上通过与平行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,诱发了心理动机]

师:你想用什么办法探索三角形面积的计算方法?

(指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定、评价鼓励。)

师:上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的。大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢?

三角形的面积教学设计14

一、教学目标:

1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。

2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。

3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

二、教材分析:

三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。

三、学校及学生状况分析:

我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的快慢程度等也会出现差异。

四、教学设计:

(一)由谈话导入新课。

1、我们已经学过长方形、正方形、平行四边形面积的计算公式。

还记得它们的面积公式吗?(一人回答)

还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?

小结:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。

2。 谁知道三角形面积的计算公式?

老师调查一下:

①知道三角形面积计算公式的举手。(可能多)

②不知道三角形面积计算公式的举手。(可能不多)

③不但知道公式,而且还知道怎样推导出来的举手。(可能不多)

今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程

[板书课题:三角形面积]

(二)探究活动。

根据你们前面的学习经验,猜一猜应怎样去探究三角形的面积?[板书:转化]

下面我们将按小组来探究三角形面积的计算公式。

1、介绍学具袋中的学具。

2、出示探究目标和建议

小组合作探究活动,三角形面积的计算公式是怎样推导出来的?

建议:边动手、边想、边说。

(1) 你把三角形转化成了你以前学过的什么图形?

(2)原来的三角形和转化后的图形有什么关系?

(3) 三角形面积的计算公式是什么? 为什么?

3、同学们自选学具,想一想就可以开始了……

(教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)

了解一下学生们探究了几种方法(至少保证每人找到一种方法)后,叫停。(此时注意发现不同方法)

4、汇报:请××同学展示自己的探究成果,在他说的时候,同学们要注意听,以便予以补充。(交流过程注意引发学生间的争论)

① 直接用两个完全一样的三角形拼成平行四边形推导……

② 用一个三角形折成长方形推导……

③ 将一个三角形用割补法推导……

(若学生用任意三角形,注意指导沿“中位线”剪开)

……

5、师生共同小结:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,于是[随即板书] 三角形的面积=底×高÷2 s=a×h÷2

6、请同学再用自己喜欢的其中一种方法说说为什么?(扩大战果)

总起来说,不管同学们用一个三角形,还是用两个三角形;也不管是用拼摆的方法,还是用割补的方法,都是在想方设法将新知识转化为旧知识。可见,你们学习的时候很注重学习方法,而且“转化”的这种数学思想正在你的头脑里逐渐形成。

(三)巩固练习(机动)

我们来试着运用这个公式:

1 基本题 先问:要想求三角形的面积必须知道什么条件?再出示数据,然后计算。

2 基本题

3 基本题

(由2、3题解决“等底等高三角形面积相等”)

4 提高题 有一直角等腰三角形,它的斜边是10厘米,你会求它的面积吗?

(四)总结

说说你这节课的感受?

(重点总结心得体会或经验教训。)

五、教学反思:

新课标不仅对学生的认知发展水平提出了要求,同时也对学生学习过程、方法、情感、态度、价值观方面的发展也提出了要求。新理念注重学生的学,强调学生学习的过程与方法,这是引导学生学会学习的关键。

如果我们将数学公式的教学仅仅看成是一般数学知识的传授,那么它就是一个僵死的`教条,只有发现了数学的思想方法和精神实质,才能演绎出生动结论。

这节课,我将知识目标定位为:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。能力目标定位为:在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。情感和意志目标定位为:激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

整节课是围绕着“通过学生发现三角形与已知图形的联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习”这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子,比如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。

这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了“再创造”,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。

六、案例点评

本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。

教师设计让学生自主动手操作,目的是以“动”促“思”,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。

通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。

三角形的面积教学设计15

教学内容:

《现代小学数学》第九册第31~35页,三角形面积的计算。

教学目标:

一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

二、能运用三角形面积计算公式进行有关的计算。

三、渗透对立统一的辩证思想。

教学过程:

一、复习引入。

1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?

出示:

2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?

3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)

【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。】

二、新课展开。

(一)实践活动。

1.让学生拿出已准备好的如下一套图形。(同桌合作)

(1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

(2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。

(3)分组讨论:

①各三角形的面积是多少?请填入表格内。

②三角形的面积怎样计算?

(4)汇报、交流,初步得出三角形面积计算方法。

【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。】

2.验证。

(1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的平行四边形。

数学课堂教学参谋

(2)汇报、交流:学生有几种剪拼法,就交流几种。如:

6×4÷2 6×(4÷2)

=12(平方厘米) =12(平方厘米)

6×4÷2 6÷2×4

=12(平方厘米) =12(平方厘米)

【设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。】

(二)归纳、小结。

1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)

2.如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah÷2)

(三)应用。

例 一块三角形钢板,底是8米,高是2.5米,它的面积是多少?

学生试做后,反馈、评讲。

【设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。】

三、巩固练习。

(一)基本练习。

1.口算出每个三角形的面积。

①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:2.5厘米 ④a:20分米,h:5.4分米

2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)

这些三角形的高都是____厘米,底都是____厘米。

这些三角形的面积都是:□×□÷2=□(平方厘米)。

3.先量一量,标出图形的.长度后,再计算各三角形的面积。

【设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。】

(二)分层练习。

a组学生:做选择题。

①求右图面积的算式是( )。

a.9×4÷2 b.15×4÷2

c.15×9÷2 d.15×4

②求右图面积的算式是( )。

a.5.2×3.5÷2

b.5.2×4.1÷2

c.4.1×3.5 d.4.1×3.5÷2

③求下图面积的算式是( )。

a.25×20 b.18×25

c.18×20 d.18×20÷2

b组学生:做课本第15页第

②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)

c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?

【设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。】

四、课堂小结。

这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?

【设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。】

五、布置作业。(略)

(此文获“第二届全国小学课堂教学征文大赛”一等奖)

三角形的面积教学设计16

教材简析:

“三角形的面积”是一节常见的课,一般的做法是在由学生拼组后直接推导出三角形的面积计算公式。本设计最大的特点是改革了这一常见的做法,在拼组后,通过对三角形与拼成的平行四边形之间的联系的探究,指导学生直接利用这种关系尝试计算三角形的面积,在积累了一定的感性认识后,再引导学生归纳、总结三角形的面积计算公式,更能为学生所接受。

教学内容

苏教版标准实验教科书《数学》五年级上册P15~P16的内容,三角形的面积。

教学目标:

1、探索并掌握三角形的计算面积公式,能应用公式正确计算三角形的面积;

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力;

3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

教学重、难点:

重点是探索并掌握三角形的面积公式,能正确计算三角形的面积。难点是理解三角形面积公式的推导过程和公式的含义。

教、学具准备:

CAI课件、红领巾、每个小组准备相同的直角三角形、锐角三角形、钝角三角形各两个。

教学过程:

一、创设情境、导入新课

1、提出问题。

师:(出示一条红领巾)同学们,这是一条红领巾。它是什么形状的?那你们会计算三角形的面积吗?

2、揭示课题。

师:那我们今天就一起来研究怎样计算“三角形的面积”?(板书课题:三角形的面积)

二、操作“转化”,推导公式

1、寻找思路。

师:是的,我们还不会计算三角形的面积。那同学们想一想,开始我们同样不会计算平行四边形的面积,后来我们通过什么方法推导出了平行四边形的面积计算公式的呢?

师:对,我们用“割补”的方法把平行四边形“转化”(板书:转化)成了一个长方形,这样推导出了平行四边形的面积计算公式。那同学们,我们能不能把三角形也“转化”成我们已经学过的图形,从而推导出三角形的面积计算公式呢?

师:大家想想,怎样“转化”呢?可不可以用“割补”的方法呢?

[应变预设:同学们根据已有的经验,一般会认为可以用这种方法,教师可以选择一种方法实际“割补”,让学生明白这种方法不好,需要寻找更好的方法。]

2、动手“转化”。

师:看来用“割补”方法很难“转化”。那我们可不可以用拼一拼的方法来“转化”呢?老师为每个小组的同学都准备了两个完全一样的三角形,请大家拼一拼,看看能不能把三角形“转化”成一个我们已经学过的图形。开始吧。

小组合作拼组图形,教师巡视指导。

[应变预设:可能有些同学不会拼组,教师可指导他们用旋转、平移等方法,把两个完全一样的三角形拼成一个平行四边形或一个长方形。]

师:拼好了吗?用这种拼一拼的方法能不能把三角形“转化”成已经学过的图形呢?谁来说一说,你们用这种方法把三角形“转化”成了什么图形?

[应变预设:一般情况下学生会拼出如下几种形状,老师选择其中三个图形贴到黑板上。]

师:同学们,为什么有些小组拼成了一个平行四边形,有的小组却拼成了一个长方形呢?你们想想,这是什么原因呢?

[评析:引导学生观察三角形的不同类别,弄清拼成不同形状的原因。]

3、尝试计算。

师:同学们真棒,大家都发现,用两个完全相同的三角形可以拼成一个平行四边形或一个长方形。现在请同学们看图1。

师:这个平行四边形就是由两个完全相同的`三角形拼成的,它的底和高分别是多少?那么,其中一个三角形的底和高又分别是多少呢?

[评析:引导学生说出拼成的平行四边形和原来的三角形等底等高,为推导三角形的面积计算公式作铺垫。]

师:知道了平行四边形的底和高,你们能求出所拼成的平行四边形的面积吗?算一算吧。

师:算完了吗?它的面积是多大?

师:我们知道,这个平行四边形是用两个完全一样的三角形拼成的,平行四边形的面积是20平方厘米,那这个绿色三角形的面积是多大呢?想一想,小组同学商量商量吧。

[应变预设:在设法求三角形的面积时,可能有部分同学不明白三角形的面积和平行四边形面积之间的关系,不会计算。这时教师应引导学生明确每个三角形的面积是拼成的平行四边形面积的一半,计算三角形的面积可用平行四边形的面积除以2得出。]

三角形的面积教学设计17

【教学内容】:

人教版五年级上册第六单元第91~92页内容

【教学目标】:

1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

【教学重点】:

探索并掌握三角形的面积公式,能正确计算三角形的面积。

【教学难点】:

理解三角形面积公式的推导过程。

【教学准备】:

每人各两个完全一样的三角形,直角三角形、锐角三角形、钝角三角形任选一种,多媒体课件。

【教学过程】:

一、汇报演示

师:同学们请看屏幕,这两块披萨老师要买一块当做明天的早餐,你建议我买哪一块呢?如果现在给你一组数据呢?

师:同学们请看屏幕,为了我们在操场玩耍更安全,为每个班级在操场上画分了一个区域,现在咱们班级啊,就剩下这两块选一个了,你打算帮班级选哪一块呢?

师:为什么买这一块呢?

师:哦,同学们通过微视频的学习,已经会计算三角形的面积了是吗?

师:谁能说说三角形面积怎么求:三角形面积=底×高÷2

师:为什么它的面积是底×高÷2呢?

生:到前面展示三角形拼平行四边形过程。

夯实对应关系:两个完全相同的三角形可以拼成一个()拼成的平行四边形的底等于()拼成的平行四边形的高()因为平行四边形的面积是()所以三角形的面积就是()。

师:总结三角形面积公式,用字母表示就是,计算三角形面的时候你知道需要注意什么?

师:刚刚我们一起推导了三角形面积的公式,它是通过转化成平行四边形后来求面积的,那你还记得我们当时学平行四边形的时候是怎样转化的吗?

师:看来这些知识之间是有联系的,并且我们可以通过已有知识的牵移,就可以解决新的问题。同学们那我们下节课要学习梯形的面积,你能想一想,它的面积可能怎样转化呢?下个微视频当中,我们一同去探究。先看我们的.三角形吧。它的面积你学明白了吗?知道求的过程中需要注意什么吗?

师:一个小小的2会在三角形的世界里为我们带来许多神奇的变化,想见识一下吗?看你能战胜这个数字,还是被它打败了。

(一)判断题。

1、两个三角形的底都是20厘米,高都是10厘米,一定可以拼成平行四边形。

2、两个完全一样的直角三角形一定可以拼成正方形。

3、面积相等的两个三角形一定等底等高。

(二)选择题。

1、下面平行线间的3个三角形大小关系正确的是()

A、ABC面积大B、BCD面积大C、BCE面积大D、同样大

2、求右图中三角形面积正确列式为()

A、4.8×5÷2B、4×5÷2C、4×4.8

师:你是胜了,还是败了啊?败给了谁啊?哎,知己知彼百战百胜,咱明知和2打仗,怎么就败了呢?可惜啊!如果给你一个反败为胜的机会,你能把握好吗?那么好吧,机会要抓住啊,咱们的敌人还是谁啊?这次战场可别轻敌啊,再败下来,可没机会喽!

(三)解决问题

1、已知一个三角形的面积是500平方米,底是40米,求这个三角形的高。

一个三角形的底是3厘米,高是4厘米,面积是多少厘米?

另一个三角形的底是3厘米,高是4厘米,面积是多少厘米?

还有一个三角形,底是4厘米,高是3厘米,面积是多少厘米?

一个三角形,底是5厘米,高是2.4厘米,面积是多少厘米?

拓展延伸:

思考一:三角形和平行四边形面积相同,底也相同,它们的高什么关系?

思考二:三角形和平行四边形面积相同,高也相同,它们的底什么关系?

思考提示:若头脑中不能建立起两个图形,我们可以利用假设方式求出它们各自的高和底再进行观察。可以假设一组数据,假设它们的面积都是20平方厘米,底都是4厘米,我们可以求出它们的高再进行观察。如果思考一你能解决,相信思考二你便能推导出这种关系,如果不能,还可以利用假设的方法,比一比,看谁最聪明。

如果你能弄清楚上面的思考题,看看自己能不能快速计算出下面几道题?

三角形和平行四边形面积相同,底相同,三角形的高是30厘米,平行四边的高是?

三角形和平行四边形面积相同,底相同,平行四边形的高是30厘米,三角形的高是?

三角形和平行四边形面积相同,高相同,三角形的底是20厘米,平行四边的底是?

三角形和平行四边形面积相同,高相同,平行四边形的底是20厘米,三角形的底是?

三角形的面积教学设计18

一、教学目标

1、使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程。

2、在动手操作的活动中,逐步培养学生归纳、推理和语言表达的能力。

3、激发学生学习数学的兴趣,学会学习数学的方法,并通过小组合作,培养学生的团队精神。

二、教材分析

三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础。《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形、平行四边形和梯形的面积公式。为落实这一目标,这部分教材均是以探索活动的形式出现的,学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生亲身经历了三角形面积计算公式的推导过程时,不仅可以借鉴前面“转化”的思想,而且为今后逐渐形成较强的探索能力打下较为扎实的基础。

三、学校及学生状况分析

我校地处海淀区的二里沟试验学区,学生接触的教材是全新的,学生所受到的教育的理念也是全新的,随着互联网技术的逐渐普及和学生学习方法的不断积累,学生学习的渠道也是多方位的,多数学生的思维是灵活的、敏捷的。但是,由于学生个体的差异,使得已有知识基础、探索新知的程度等也会出现差异。

四、教学设计

(一)由谈话导入新课

师:我们已经学过长方形、正方形、平行四边形面积的计算公式。还记得它们的面积公式吗?(一人回答)还记得正方形面积公式是怎样推导出来的吗?平行四边形面积呢?

师:看来,我们所学习过的面积公式,都是在已经学习过的旧知识的基础上,转化推导出来的。

师:谁知道三角形面积的计算公式?老师调查一下:知道三角形面积计算公式的举手;不知道三角形面积计算公式的举手;不但知道公式,而且还知道怎样推导出来的.举手。

师:今天这节课我们就来亲身体验一下三角形面积计算公式的推导过程。

[板书课题:三角形面积]

(二)探究活动。

师:根据你们前面的学习经验,谁能说一说应怎样去探究三角形的面积?[板书:转化]

师:下面我们将按小组来探究三角形面积的计算公式。

(教师介绍学具袋中的学具,并出示探究活动的目标、建议与思考,见下表)

(学生在探究活动时,教师参与学生的活动,一方面帮助学生解决学习上的困难,另一方面为汇报选取针对性较强的素材。)

师:谁愿意展示自己的探究成果?在同学介绍自己的探究成果时,其他同学要注意听,以便予以补充(交流过程注意引发学生间的争论)。

生1:我们是直接用两个完全一样的三角形拼成一个平行四边形,然后推导出三角形的面积计算公式。

生2:我们小组是用一个三角形折成长方形后推导出计算公式的。

生3:我们是将一个三角形用割补法进行推导的。

……

师:同学们分别总结出直角、锐角、钝角三角形面积的计算公式,那么,谁能概括出三角形面积计算的公式呢?

生:三角形的面积=底×高÷2 s=a×h÷2 (在学生叙述时,教师板书)

师:刚才这个同学概括了三角形的面积计算公式,请同学们再用自己喜欢语言再来说一说三角形面积公式的意义。

师:不论同学们用一个三角形、或者两个三角形,还是用拼摆、或者用割补的方法,都是在想方设法将新知识转化为旧知识,这是推导三角形面积计算公式的重要方法?

师:下面我们运用三角形的面积计算公式解决一些具体的问题。

(巩固练习略)

五、教学反思

本节课是围绕着“通过学生发现三角形面积与已学图形面积的联系,自主探究三角形面积计算公式的推导过程,激发学生学习数学的兴趣,不断体验和感悟学习数学的方法,使学生学会学习”这个教学重点展开。并注意从每一个细微之处着手关心和爱护每一个孩子。如揭示课题后,我便对学生进行调查:哪些同学知道三角形面积的计算公式;哪些同学不知道三角形面积的计算公式;再有就是有哪些同学不但知道三角形面积的计算公式,而且还知道公式是怎样推导出来的,目的是为了了解学生的知识基础,从而帮助他更好地完成学习的过程。他如果是第一种回答,我会表扬他,不但能在学校学到知识,而且还能通过上网、读书等渠道学到知识;他如果是第二种回答,我会告诉他,没关系,这是新知识,只要努力就能学会;他如果是第三种回答,我会鼓励他继续向更高的目标努力,总之,让不同的孩子尽自己的所能学不同的数学。

这节课学生在三角形面积计算公式的探究活动中是自主的、是开放的,让学生体验了“再创造”,本节课的最后一道练习题也是开放的,他让学生体验着数学的无穷魅力。

六、案例点评

本节课是在学生已掌握了长方形、正方形、平行四边形、三角形的面积计算的基础上进行教学的。教学这部分内容对于培养学生识别图形,解决日常生活中的简单实际问题,发展学生空间观念和初步的逻辑思维能力都有重要意义,也是进一步学习几何知识的基础。

教师设计让学生自主动手操作,目的是以“动”促“思”,让学生在动手过程中迸发出创造新思维的火花,同时调动学生多种感官参与学习生活动,激发学生的学习兴趣,适时进行小组合作,给学生提供了充分的自主学习的活动空间和广泛交流的机会,真正体现了学生的主体地位。

通过把学生的汇报和多媒体的演示相结合,进一步体验图形转化的过程。练习设计做到有层次、有坡度,难易适当。即从基本题入手过度到综合题,引申到思考题。其目的是让学生所学的知识在基础中得到巩固,在综合中得到沟通,在思考题中得到升华。如最后一题的设计,它留给学生更多的思考空间,学生可以在更大的范围内思考,更大程度地发挥学生的主体地位,训练了学生的发散思维。

三角形的面积教学设计19

教学内容:

人教版五年级上册84----85页

教材分析:

三角形的面积是本单元教学内容的第二课时,是在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,教材首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,接着根据平行四边形面积公式推导的方法提出解决问题的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出面积计算公式,这样一方面使学生初步体会到几何图形的位置变换和转化是有规律的,另一方面有助于发展学生的空间观念。

学情分析:

学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形、平行四边形的面积计算,学生学习时并不陌生,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法探究有关图形的知识,在学习方法上也有一定的基础,教学时从学生的现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变成有趣的、充满想象和富有推理的活动。

教学目标:

1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。

2、通过操作使学生进一步学习用转化的思想方法解决新问题。

3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。

4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。

教学重点:

理解并掌握三角形面积的计算公式。

教学难点:

理解三角形面积的推导过程。

教法与学法:教法:

演示讲解、指导实践。

学法:小组合作、动手操作。

教学准备:

三角形卡片、多媒体课件

教学过程:

一、情境引入

师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)

[设计意图]通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。

二、探究新知

1、复师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的?

师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的'联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。

[设计意图]抓住新旧知识的生长点进行复习,检验学生对已有知识的掌握情况和转化思想的理解情况,建立起新旧知识的联系,为学习新知做好铺垫。

2、第一次操作实践

师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)

3、交流反馈

师:同学们都拼好了,谁来说说你是怎样拼的?

三角形的面积教学设计20

教学目标:

1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

2.培养学生观察能力、动手操作能力和类推迁移的能力.

3.培养学生勤于思考,积极探索的学习精神.

教学重点:理解三角形面积计算公式,正确计算三角形的面积.

教学难点:理解三角形面积公式的推导过程.

教学过程:

一、激发

1.出示平行四边形

提问:

(1)这是什么图形? 计算平行四边形的面积我们学过哪些方法?学生总结并回答前面学过的内容。(数表格的方法,割补法,直接测量底和高进行计算等等)

师总结:平行四边形面积=底×高

(2)底是2厘米,高是1.5厘米,求它的面积。

(3)平行四边形面积的计算公式是怎样推导的?

2.出示三角形。三角形按角可以分为哪几种?

3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

教师:今天我们一起研究“三角形的面积”(板书)

二、指导探索

(一)推导三角形面积计算公式。

1、师出示情境图,提出问题:三角形的面积你会求吗?图中的几位同学它们在讨论什么?你有什么好办法吗?(学生讨论,拿出学具分小组讨论)

分析:如果我们不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?

2、三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。我们分别验证一下。(学生自己发现规律,教师出示场景二)

3、启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

4、用直角三角形推导

(1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。

(2)拼成的这些图形中,哪几个图形的面积我们不会计算?

(3)利用拼成的长方形和平行四边形,怎样求三角形面积?

(4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?(引导学生得出:每个直角三角形的面积等于拼成的平行四边形面积的的一半。)

5、用锐角或者钝角三角形推导。

(1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。

(2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,(教师边演示边讲述边提问)对照拼成的图形,你发现了什么?(学生自主拼图)引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。

(3)两个完全一样的钝角三角形能用刚才的'方法来拼吗?学生实验,教师巡回指导。

问题:通过刚才的操作,你又发现了什么?

引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的面积的一半

6、归纳、总结公式。

(1)通过以上实验,同学们互相讨论一下,你发现了什么规律?

(2)汇报结果。

引导学生明确:

①两个完全一样的三角形都可以拼成一个平行四边形。

②每个三角形的面积等于拼成的平行四边形面积的一半。

③这个平行四边形的底等于三角形的底。

④这个平行四边形的高等于三角形的高。

7、提问并思考,强化推导过程:三角形面积的计算公式是怎样推导出来的?为什么要加上“除以 2”?(强化理解推导过程)

三角形面积=底×高÷2

8、教学字母公式。

引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:

(二)、应用

1、教学例题:

红领巾分底是 100cm,高 33厘米,它的面积是多少平方厘米?

①读题。理解题意。

②学生试做。指名板演。

③订正。提问:计算三角形面积为什么要“除以2”?

2、完成做一做

三、质疑调节

(一)总结这一节课的收获,并提出自己的问题.

(二)教师提问:

(1)要求三角形面积需要知道哪两个已知条件?

(2)求三角形面积为什么要除以2?

四、反馈练习

(一)填空

(1)一个三角形的底是4分米,高是30厘米,面积是( )平方分米。

(2)一个三角形的高是7分米,底是8分米,和它等底等高的平行四边形的面积是( )平方分米。

(3)一个三角形的面积是4.8平方米,与它等底等高的平行四边形的面积是( )

(4)一个三角形的面积比它等底等高的平行四边形的面积少12.5平方分米,平行四边形的面积是( )平方分米,三角形的面积是( )平方分米。

(5)一个三角形和一个平行四边形的面积相等,底也相等,如果三角形的高是10米,那么平行四边形的高是( )米;如果平行四边形的高是10米,那么三角形的高是()米。

(二)判断

1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。( ×)

2、等底等高的两个三角形,面积一定相等。 (√ )

3、两个三角形一定可以拼成一个平行四边形。 ( ×)

4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。()

(5)两个面积相等的三角形可以拼成一个平行四边形。(×)

(6)等底等高的两个三角形,面积一定相等。( √ )

(7)三角形面积等于平行四边形面积的一半。(× )

(8)三角形的底越长,面积就越大。(× )

(9)三角形的底扩大2倍,高扩大3倍,面积就扩大6倍。(√ )

五、作业:85页做一做和练习十六第1、2、3、4题

板书设计:

三角形面积的计算

因为:平行四边形的面积=底×高, 例1… …

三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)

所以三角形面积=底×高÷2

S=ah÷2

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2024/12/23 8:28:32