标题 | 整式的乘除与因式分解练习题整合 |
范文 | 整式的乘除与因式分解练习题整合 因式分解同步练习(解答题) 解答题 9.把下列各式分解因式: ①a2+10a+25 ②m2-12mn+36n2 ③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2 10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值. 11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值. 答案: 9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2 通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。 因式分解同步练习(填空题) 同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。 因式分解同步练习(填空题) 填空题 5.已知9x2-6xy+k是完全平方式,则k的值是________. 6.9a2+(________)+25b2=(3a-5b)2 7.-4x2+4xy+(_______)=-(_______). 8.已知a2+14a+49=25,则a的值是_________. 答案: 5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12 因式分解同步练习(选择题) 选择题 1.已知y2+my+16是完全平方式,则m的值是( ) A.8 B.4 C.±8 D.±4 2.下列多项式能用完全平方公式分解因式的是( ) A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1 3.下列各式属于正确分解因式的是( ) A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2 C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2 4.把x4-2x2y2+y4分解因式,结果是( ) A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2 答案: 1.C 2.D 3.B 4.D 整式的乘除与因式分解单元测试卷(填空题) 填空题(每小题4分,共28分) 7.(4分)(1)当x _________ 时,(x﹣4)0=1;(2)(2/3)2002×(1.5)2003÷(﹣1)2004= _________ 8.(4分)分解因式:a2﹣1+b2﹣2ab= _________ . 9.(4分)(2004万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要 _________ .(单位:mm)(用含x、y、z的代数式表示) 10.(4分)(2004郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为 _________ . 11.(4分)(2002长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数. (a+b)1=a+b; (a+b)2=a2+2ab+b2; (a+b)3=a3+3a2b+3ab2+b3; (a+b)4=a4+ _________ a3b+ _________ a2b2+ _________ ab3+b4. 12.(4分)(2004荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a) 第n年12345… 老芽率aa2a3a5a… 新芽率0aa2a3a… 总芽率a2a3a5a8a… 照这样下去,第8年老芽数与总芽数的比值为 _________ (精确到0.001). 13.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为 _________ . 答案: 7. 考点:零指数幂;有理数的乘方。1923992 专题:计算题。 分析:(1)根据零指数的意义可知x﹣4≠0,即x≠4; (2)根据乘方运算法则和有理数运算顺序计算即可. 解答:解:(1)根据零指数的意义可知x﹣4≠0, 即x≠4; (2)(2/3)2002×(1.5)2003÷(﹣1)2004=(2/3×3/2)2002×1.5÷1=1.5. 点评:主要考查的知识点有:零指数幂,负指数幂和平方的运算,负指数为正指数的倒数,任何非0数的0次幂等于1. 8. 考点:因式分解-分组分解法。1923992 分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中a2+b2﹣2ab正好符合完全平方公式,应考虑为一组. 解答:解:a2﹣1+b2﹣2ab =(a2+b2﹣2ab)﹣1 =(a﹣b)2﹣1 =(a﹣b+1)(a﹣b﹣1). 故答案为:(a﹣b+1)(a﹣b﹣1). 点评:此题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组,要考虑分组后还能进行下一步分解. 9. 考点:列代数式。1923992 分析:主要考查读图,利用图中的信息得出包带的长分成3个部分:包带等于长的有2段,用2x表示,包带等于宽有4段,表示为4y,包带等于高的有6段,表示为6z,所以总长时这三部分的和. 解答:解:包带等于长的有2x,包带等于宽的有4y,包带等于高的有6z,所以总长为2x+4y+6z. 点评:解决问题的关键是读懂题意,找到所求的量的等量关系. 10. 考点:平方差公式。1923992 分析:将2a+2b看做整体,用平方差公式解答,求出2a+2b的值,进一步求出(a+b)的`值. 解答:解:∵(2a+2b+1)(2a+2b﹣1)=63, ∴(2a+2b)2﹣12=63, ∴(2a+2b)2=64, 2a+2b=±8, 两边同时除以2得,a+b=±4. 点评:本题考查了平方差公式,整体思想的利用是解题的关键,需要同学们细心解答,把(2a+2b)看作一个整体. 11 考点:完全平方公式。1923992 专题:规律型。 分析:观察本题的规律,下一行的数据是上一行相邻两个数的和,根据规律填入即可. 解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4. 点评:在考查完全平方公式的前提下,更深层次地对杨辉三角进行了了解. 12 考点:规律型:数字的变化类。1923992 专题:图表型。 分析:根据表格中的数据发现:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.根据这一规律计算出第8年的老芽数是21a,新芽数是13a,总芽数是34a,则比值为 21/34≈0.618. 解答:解:由表可知:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和, 所以第8年的老芽数是21a,新芽数是13a,总芽数是34a, 则比值为21/34≈0.618. 点评:根据表格中的数据发现新芽数和老芽数的规律,然后进行求解.本题的关键规律为:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和. 13. 考点:整式的混合运算。1923992 分析:运用完全平方公式计算等式右边,再根据常数项相等列出等式,求解即可. 解答:解:∵(x+2)2﹣1=x2+4x+4﹣1, ∴a=4﹣1, 解得a=3. 故本题答案为:3. 点评:本题考查了完全平方公式,熟记公式,根据常数项相等列式是解题的关键. 以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工作。 整式的乘除与因式分解单元测试卷 选择题(每小题4分,共24分) 1.(4分)下列计算正确的是( ) A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6 2.(4分)(x﹣a)(x2+ax+a2)的计算结果是( ) A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a3 3.(4分)下面是某同学在一次检测中的计算摘录: ①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2 其中正确的个数有( ) A.1个B.2个C.3个D.4个 4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是( ) A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+1 5.(4分)下列分解因式正确的是( ) A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y) 6.(4分)(2003常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为( ) A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab 答案: 1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。1923992 分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解. 解答:解:A、a2与b3不是同类项,不能合并,故本选项错误; B、应为a4÷a=a3,故本选项错误; C、应为a3a2=a5,故本选项错误; D、(﹣a2)3=﹣a6,正确. 故选D. 点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键. 2. 考点:多项式乘多项式。1923992 分析:根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,计算即可. 解答:解:(x﹣a)(x2+ax+a2), =x3+ax2+a2x﹣ax2﹣a2x﹣a3, =x3﹣a3. 故选B. 点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同. 3. 考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;整式的除法。1923992 分析:根据单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的性质,同底数幂的除法的性质,对各选项计算后利用排除法求解. 解答:解:①3x3(﹣2x2)=﹣6x5,正确; ②4a3b÷(﹣2a2b)=﹣2a,正确; ③应为(a3)2=a6,故本选项错误; ④应为(﹣a)3÷(﹣a)=(﹣a)2=a2,故本选项错误. 所以①②两项正确. 故选B. 点评:本题考查了单项式乘单项式,单项式除单项式,幂的乘方,同底数幂的除法,注意掌握各运算法则. 4 考点:完全平方公式。1923992 专题:计算题。 分析:首先找到它后面那个整数x+1,然后根据完全平方公式解答. 解答:解:x2是一个正整数的平方,它后面一个整数是x+1, ∴它后面一个整数的平方是:(x+1)2=x2+2x+1. 故选C. 点评:本题主要考查完全平方公式,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2. 5, 考点:因式分解-十字相乘法等;因式分解的意义。1923992 分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确. 解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误; B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确; C、是整式的乘法,不是分解因式,故本选项错误; D、没有平方和的公式,x2+y2不能分解因式,故本选项错误. 故选B. 点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止. 6 考点:因式分解-十字相乘法等;因式分解的意义。1923992 分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确. 解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误; B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确; C、是整式的乘法,不是分解因式,故本选项错误; D、没有平方和的公式,x2+y2不能分解因式,故本选项错误. 故选B. 点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止. 6. 考点:列代数式。1923992 专题:应用题。 分析:可绿化部分的面积为=S长方形ABCD﹣S矩形LMPQ﹣S?RSTK+S重合部分. 解答:解:∵长方形的面积为ab,矩形道路LMPQ面积为bc,平行四边形道路RSTK面积为ac,矩形和平行四边形重合部分面积为c2. ∴可绿化部分的面积为ab﹣bc﹣ac+c2. 故选C. 点评:此题要注意的是路面重合的部分是面积为c2的平行四边形. 用字母表示数时,要注意写法: ①在代数式中出现的乘号,通常简写做“”或者省略不写,数字与数字相乘一般仍用“×”号; ②在代数式中出现除法运算时,一般按照分数的写法来写; ③数字通常写在字母的前面; ④带分数的要写成假分数的形式. |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。