标题 | 高一数学教案 |
范文 | 高一数学教案集锦15篇 作为一名优秀的教育工作者,时常需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么什么样的教案才是好的呢?下面是小编收集整理的高一数学教案,欢迎阅读与收藏。 高一数学教案1教材分析:幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数。本课的教学重点是掌握常见幂函数的概念和性质,难点是根据幂函数的单调性比较两个同指数的指数式的大小。 幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数 。 组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质。对于幂函数,只需重点掌握 这五个函数的图象和性质。 学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。 学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。 教学目标: ㈠知识和技能 1、了解幂函数的概念,会画幂函数 ,的图象,并能结合这几个幂函数的图象,了解幂函数图象的变化情况和性质。 2、了解几个常见的幂函数的性质。 ㈡过程与方法 1、通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。 2、使学生进一步体会数形结合的思想。 ㈢情感、态度与价值观 1、通过生活实例引出幂函数的概念,使学生体会到生活中处处有数学,激发学生的学习兴趣。 2、利用计算机等工具,了解幂函数和指数函数的本质差别,使学生充分认识到现代技术在人们认识世界的过程中的作用,从而激发学生的学习欲望。 教学重点 常见幂函数的概念和性质 教学难点 幂函数的单调性与幂指数的关系 教学过程 一、创设情景,引入新课 问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系? (总结:根据函数的定义可知,这里p是w的函数) 问题2:如果正方形的边长为a,那么正方形的面积 ,这里S是a的函数。 问题3:如果正方体的边长为a,那么正方体的体积 ,这里V是a的函数。 问题4:如果正方形场地面积为S,那么正方形的边长xx,这里a是S的函数 问题5:如果某人xxs内骑车行进了xxkm,那么他骑车的速度,这里v是t的函数。 以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量)这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题) 二、新课讲解 (一)幂函数的概念如果设变量为,函数值为xx,你能根据以上的生活实例得到怎样的一些具体的函数式?这里所得到的函数是幂函数的几个典型代表,你能根据此给出幂函数的一般式吗?这就是幂函数的一般式,你能根据指数函数、对数函数的定义,给出幂函数的定义吗?xx幂函数的定义:一般地,我们把形如xx的函数称为幂函数(power function),其中xx是自变量,xx是常数。 【探究一】幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念) 结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别:对幂函数来说,底数是自变量,指数是常数对指数函数来说,指数是自变量,底数是常数 试一试:判断下列函数那些是幂函数(1)(2)(3)(4)我们已经对幂函数的概念有了比较深刻的认识,根据我们前面学习指数函数、对数函数的学习经历,你认为我们下面应该研究什么呢?(研究图象和性质) (二)几个常见幂函数的图象和性质 在初中我们已经学习了幂函数x的图象和性质,请同学们在同一坐标系中画出它们的图象。根据你的学习经历,你能在同一坐标系内画出函数x的图象吗? 【探究二】观察函数x的图象,将你发现的结论写在下表内。定义域,值域,奇偶性,单调性,定点,图象范围 【探究三】根据上表的内容并结合图象,试总结函数:x的共同性质。 (1)函数x的图象都过点 (2)函数x在x上单调递增; 归纳:幂函数x图象的基本特征是,当x是,图象过点x,且在第一象限随x的增大而上升,函数在区间x上是单调增函数。(演示几何画板制作课件:幂函数。asp) 请同学们模仿我们探究幂函数x图象的基本特征x的情况探讨x时幂函数x图象的基本特征。(利用drawtools软件作图研究) 归纳:xx时幂函数x图象的基本特征:过点x,且在第一象限随x的增大而下降,函数在区间x上是单调减函数,且向右无限接近X轴,向上无限接近Y轴。 (三)例题剖析 【例1】求下列幂函数的定义域,并指出其奇偶性、单调性。(1) (2) (3) 分析:根据你的学习经历,你觉得求一个函数的定义域应该从哪些方面来考虑? 方法引导:解决有关函数求定义域的问题时,可以从以下几个方面来考虑,列出相应不等式或不等式组,解不等式或不等式组即可得到所求函数的定义域。 (1)若函数解析式中含有分母,分母不能为0; (2)若函数解析式中含有根号,要注意偶次根号下非负; (3)0的0次幂没有意义; (4)若函数解析式中含有对数式,要注意对数的真数大于0;求函数的定义域的本质是解不等式或不等式组。 结论:在函数解析式中含有分数指数时,可以把它们的解析式化成根式,根据“偶次根号下非负”这一条件来求出对应函数的定义域;当函数解析式的幂指数为负数时,根据负指数幂的意义将其转化为分式形式,根据分式的分母不能为0这一限制条件来求出对应函数的定义域。归纳分析如果判断幂函数的单调性(第一象限利用性质,其余象限利用函数奇偶性与单调性的关系) 【例2】比较下列各组数中两个值的大小(在横线上填上“<”或“>”) (1)________ (2)________ (3)__________ (4)____________ 分析:利用考察其相对应的幂函数和指数函数来比较大小 三、课堂小结 1、幂函数的概念及其指数函数表达式的区别 2、常见幂函数的图象和幂函数的性质。 四、布置作业 ㈠课本第73页习题2.4 第1、2、3题 ㈡思考题:根据下列条件对于幂函数x的有关性质的叙述,分别指出幂函数x的图象具有下列特点之一时的x的值,其中: (1)图象过原点,且随x的增大而上升; (2)图象不过原点,不与坐标轴相交,且随x的增大而下降; (3)图象关于x轴对称,且与坐标轴相交; (4)图象关于x轴对称,但不与坐标轴相交; (5)图象关于原点对称,且过原点; (6)图象关于原点对称,但不过原点; 检测与反馈 1、下列函数中,是幂函数的是( ) A、 B、 C、 D、 2、下列结论正确的是( ) A、幂函数的图象一定过原点 B、当xx时,幂函数x是减函数 C、当xx时,幂函数x是增函数 D、函数 既是二次函数,也是幂函数 3、下列函数中,在 是增函数的是( ) A、 B、 C、 D、 4、函数 的图象大致是( ) 5、已知某幂函数的图象经过点 ,则这个函数的解析式为_______________________ 6、写出下列函数的定义域,并指出它们的单调性: 同伴评 (优、良、中、须努力) 自 评 (优、良、中、须努力) 教师评 (优、良、中、须努力) 高一数学教案2教材:逻辑联结词 目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。 过程: 一、提出课题:简单逻辑、逻辑联结词 二、命题的概念: 例:125 ① 3是12的约数 ② 0.5是整数 ③ 定义:可以判断真假的语句叫命题。正确的叫真命题,错误的叫假命题。 如:①②是真命题,③是假命题 反例:3是12的约数吗? x5 都不是命题 不涉及真假(问题) 无法判断真假 上述①②③是简单命题。 这种含有变量的语句叫开语句(条件命题)。 三、复合命题: 1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。 2.例: (1)10可以被2或5整除④ 10可以被2整除或10可以被5整除 (2)菱形的对角线互相 菱形的对角线互相垂直且菱形的 垂直且平分⑤ 对角线互相平分 (3)0.5非整数⑥ 非0.5是整数 观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。 3.其实,有些概念前面已遇到过 如:或:不等式 x2x60的解集 { x | x2或x3 } 且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 } 四、复合命题的构成形式 如果用 p, q, r, s表示命题,则复合命题的形式接触过的有以下三种: 即: p或q (如 ④) 记作 pq p且q (如 ⑤) 记作 pq 非p (命题的否定) (如 ⑥) 记作 p 小结:1.命题 2.复合命题 3.复合命题的构成形式 高一数学教案3[教学重、难点] 认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。 [教学准备] 学生、老师剪下附页2中的图2。 [教学过程] 一、画一画,说一说 1、学生各自借助三角板或直尺分别画一个锐角、直角、钝角。 2、教师巡查练习情况。 3、学生展示练习,说一说为什么是锐角、直角、钝角? 二、分一分 1、小组活动;把附页2中的图2中的三角形进行分类,动手前先观察这些三角形的特点,然后小组讨论怎样分? 2、汇报:分类的标准和方法。可以按角来分,可以按边来分。 二、按角分类: 1、观察第一类三角形有什么共同的特点,从而归纳出三个角都是锐角的'三角形是锐角三角形。 2、观察第二类三角形有什么共同的特点,从而归纳出有一个角是直角的三角形是直角三角形 3、观察第三类三角形有什么共同的特点,从而归纳出有一个角是钝角的三角形是钝角三角形。 三、按边分类: 1、观察这类三角形的边有什么共同的特点,引导学生发现每个三角形中都有两条边相等,这样的三角形叫等腰三角形,并介绍各部分的名称。 2、引导学生发现有的三角形三条边都相等,这样的三角形是等边三角形。讨论等边三角形是等腰三角形吗? 四、填一填: 24、25页让学生辨认各种三角形。 五、练一练: 第1题:通过“猜三角形游戏”让学生体会到看到一个锐角,不能决定是一个锐角三角形,必须三个角都是锐角才是锐角三角形。 第2题:在点子图上画三角形第3题:剪一剪。 六、完成26页实践活动。 高一数学教案4【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考! 本文题目:空间几何体的三视图和直观图高一数学教案 第一课时 1.2.1中心投影与平行投影 1.2.2空间几何体的三视图 教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体. 教学重点:画出三视图、识别三视图. 教学难点:识别三视图所表示的空间几何体. 教学过程: 一、新课导入: 1. 讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸? 2. 引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。 对于我们所学几何体,常用三视图和直观图来画在纸上. 三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形; 直观图:观察者站在某一点观察几何体,画出的空间几何体的图形. 用途:工程建设、机械制造、日常生活. 二、讲授新课: 1. 教学中心投影与平行投影: ① 投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。 ② 中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形. ③ 平行投影:在一束平行光线照射下形成的投影. 分正投影、斜投影. 讨论:点、线、三角形在平行投影后的结果. 2. 教学柱、锥、台、球的三视图: 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图 讨论:三视图与平面图形的关系? 画出长方体的三视图,并讨论所反应的长、宽、高 结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果. 正视图、侧视图、俯视图. ③ 试画出:棱柱、棱锥、棱台、圆台的三视图. ( ④ 讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高) 正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 ⑤ 讨论:根据以上的三视图,如何逆向得到几何体的形状. (试变化以上的三视图,说出相应几何体的摆放) 3. 教学简单组合体的三视图: ① 画出教材P16 图(2)、(3)、(4)的三视图. ② 从教材P16思考中三视图,说出几何体. 4. 练习: ① 画出正四棱锥的三视图. 画出右图所示几何体的三视图. ③ 右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状. 5. 小结:投影法;三视图;顺与逆 三、巩固练习: 练习:教材P17 1、2、3、4 第二课时 1.2.3 空间几何体的直观图 教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图. 教学重点:画出直观图. 高一数学教案5学习目标 1.函数奇偶性的概念 2.由函数图象研究函数的奇偶性 3.函数奇偶性的判断 重点:能运用函数奇偶性的定义判断函数的奇偶性 难点:理解函数的奇偶性 知识梳理: 1.轴对称图形: 2中心对称图形: 【概念探究】 1、 画出函数 ,与 的图像;并观察两个函数图像的对称性。 2、 求出 , 时的函数值,写出 , 。 结论: 。 3、 奇函数:___________________________________________________ 4、 偶函数:______________________________________________________ 【概念深化】 (1)、强调定义中任意二字,奇偶性是函数在定义域上的整体性质。 (2)、奇函数偶函数的定义域关于原点对称。 5、奇函数与偶函数图像的对称性: 如果一个函数是奇函数,则这个函数的图像是以坐标原点为对称中心的__________。反之,如果一个函数的图像是以坐标原点为对称中心的中心对称图形,则这个函数是___________。 如果一个函数是偶函数,则这个函数的图像是以 轴为对称轴的__________。反之,如果一个函数的图像是关于 轴对称,则这个函数是___________。 6. 根据函数的奇偶性,函数可以分为____________________________________. 题型一:判定函数的奇偶性。 例1、判断下列函数的奇偶性: (1) (2) (3) (4) (5) 练习:教材第49页,练习A第1题 总结:根据例题,你能给出用定义判断函数奇偶性的步骤? 题型二:利用奇偶性求函数解析式 例2:若f(x)是定义在R上的奇函数,当x0时,f(x)=x(1-x),求当 时f(x)的解析式。 练习:若f(x)是定义在R上的奇函数,当x0时,f(x)=x|x-2|,求当x0时f(x)的解析式。 已知定义在实数集 上的奇函数 满足:当x0时, ,求 的表达式 题型三:利用奇偶性作函数图像 例3 研究函数 的性质并作出它的图像 练习:教材第49练习A第3,4,5题,练习B第1,2题 当堂检测 1 已知 是定义在R上的奇函数,则( D ) A. B. C. D. 2 如果偶函数 在区间 上是减函数,且最大值为7,那么 在区间 上是( B ) A. 增函数且最小值为-7 B. 增函数且最大值为7 C. 减函数且最小值为-7 D. 减函数且最大值为7 3 函数 是定义在区间 上的偶函数,且 ,则下列各式一定成立的是(C ) A. B. C. D. 4 已知函数 为奇函数,若 ,则 -1 5 若 是偶函数,则 的单调增区间是 6 下列函数中不是偶函数的是(D ) A B C D 7 设f(x)是R上的偶函数,切在 上单调递减,则f(-2),f(- ),f(3)的大小关系是( A ) A B f(- )f(-2) f(3) C f(- ) 8 奇函数 的图像必经过点( C ) A (a,f(-a)) B (-a,f(a)) C (-a,-f(a)) D (a,f( )) 9 已知函数 为偶函数,其图像与x轴有四个交点,则方程f(x)=0的所有实根之和是( A ) A 0 B 1 C 2 D 4 10 设f(x)是定义在R上的奇函数,且x0时,f(x)= ,则f(-2)=_-5__ 11若f(x)在 上是奇函数,且f(3)_f(-1) 12.解答题 用定义判断函数 的奇偶性。 13定义证明函数的奇偶性 已知函数 在区间D上是奇函数,函数 在区间D上是偶函数,求证: 是奇函数 14利用函数的奇偶性求函数的解析式: 已知分段函数 是奇函数,当 时的解析式为 ,求这个函数在区间 上的解析表达式。 高一数学教案6知识结构 重难点分析 本节的重点是二次根式的化简.本章自始至终围绕着二次根式的化简与计算进行,而二次根式的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论. 本节的难点是正确理解与应用公式.这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误. 教法建议 1.性质的引入方法很多,以下2种比较常用: (1)设计问题引导启发:由设计的问题 1)、、各等于什么? 2)、、各等于什么? 启发、引导学生猜想出 (2)从算术平方根的意义引入. 2.性质的巩固有两个方面需要注意: (1)注意与性质进行对比,可出几道类型不同的题进行比较; (2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等. (第1课时) 一、教学目标 1.掌握二次根式的性质 2.能够利用二次根式的性质化简二次根式 3.通过本节的学习渗透分类讨论的数学思想和方法 二、教学设计 对比、归纳、总结 三、重点和难点 1.重点:理解并掌握二次根式的性质 2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式. 四、课时安排 1课时 五、教B具学具准备 投影仪、胶片、多媒体 六、师生互动活动设计 复习对比,归纳整理,应用提高,以学生活动为主 七、教学过程 一、导入新课 我们知道,式子()表示非负数的算术平方根. 问:式子的意义是什么?被开方数中的表示的是什么数? 答:式子表示非负数的算术平方根,即,且,从而可以取任意实数. 二、新课 计算下列各题,并回答以下问题: (1);(2);(3); 1.各小题中被开方数的幂的底数都是什么数? 2.各小题的结果和相应的被开方数的幂的底数有什么关系? 3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论. 高一数学教案7学习是一个潜移默化、厚积薄发的过程。编辑老师编辑了高一数学教案:数列,希望对您有所帮助! 教学目标 1.使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. (1)理解数列是按一定顺序排成的一列数,其每一项是由其项数唯一确定的. (2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式. (3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项. 2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力. 3.通过由求的过程,培养学生严谨的科学态度及良好的思维习惯. 教学建议 (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等. (2)数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列.函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法.由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法. (3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度差的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助. (4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等.如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系. (5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况. (6)给出一些简单数列的通项公式,可以求其最大项或最小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的. 上述提供的高一数学教案:数列希望能够符合大家的实际需要! 高一数学教案8一、教材分析 1、 教材的地位和作用: 函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。 2、 教学目标及确立的依据: 教学目标: (1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。 (2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。 (3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。 教学目标确立的依据: 函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而掌握好函数的概念是学好函数的基石。 3、教学重点难点及确立的依据: 教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。 教学难点:映射的概念,函数近代概念,及函数符号的理解。 重点难点确立的依据: 映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。 二、教材的处理: 将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。 三、教学方法和学法 教学方法:讲授为主,自主预习为辅。 依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为能学好后面的知识打下坚实的基础。 学法:四、教学程序 一、课程导入 通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。 例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起? 二. 新课讲授: (1) 接着再通过幻灯片给出六组学生熟悉的`数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:a→b,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的对应法则 f。进一步引导判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有唯一确定的元素与之对应。 (2)巩固练习课本52页第八题。 此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。 例1. 给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有唯一的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:a→b记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{ f(x):x∈a}叫做函数的值域。 并把函数的近代定义与映射定义比较使认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。 再以让判断的方式给出以下关于函数近代定义的注意事项:2. 函数是非空数集到非空数集的映射。 3. f表示对应关系,在不同的函数中f的具体含义不一样。 4. f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。 5. 集合a中的数的任意性,集合b中数的唯一性。 66. “f:a→b”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c∈b)。 三.讲解例题 例1.问y=1(x∈a)是不是函数? 解:y=1可以化为y=0*x+1 画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。 [注]:引导从集合,映射的观点认识函数的定义。 四.课时小结: 1. 映射的定义。 2. 函数的近代定义。 3. 函数的三要素及符号的正确理解和应用。 4. 函数近代定义的五大注意点。 五.课后作业及板书设计 书本p51 习题2.1的1、2写在书上3、4、5上交。 预习函数三要素的定义域,并能求简单函数的定义域。 函数(一) 一、映射: 2.函数近代定义: 例题练习 二、函数的定义 [注]1—5 1.函数传统定义 三、作业: 高一数学教案9教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想. 教学目的: (1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用; (2)了解构成函数的要素; (3)会求一些简单函数的定义域和值域; (4)能够正确使用“区间”的符号表示某些函数的定义域; 教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数; 教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示; 教学过程: 一、引入课题 1.复习初中所学函数的概念,强调函数的模型化思想; 2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想: (1)炮弹的射高与时间的变化关系问题; (2)南极臭氧空洞面积与时间的变化关系问题; (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题 备用实例: 我国xxxx年4月份非典疫情统计: 日期222324252627282930 新增确诊病例数1061058910311312698152101 3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系; 4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系. 二、新课教学 (一)函数的有关概念 1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function). 记作:y=f(x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range). 注意: ○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x. 2.构成函数的三要素: 定义域、对应关系和值域 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 4.一次函数、二次函数、反比例函数的定义域和值域讨论 (由学生完成,师生共同分析讲评) (二)典型例题 1.求函数定义域 课本P20例1 解:(略) 说明: ○1函数的定义域通常由问题的实际背景确定,如果课前三个实例; ○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; ○3函数的定义域、值域要写成集合或区间的形式. 巩固练习:课本P22第1题 2.判断两个函数是否为同一函数 课本P21例2 解:(略) 说明: ○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) ○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。 巩固练习: ○1课本P22第2题 ○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? (1)f(x)=(x-1)0;g(x)=1 (2)f(x)=x;g(x)= (3)f(x)=x2;f(x)=(x+1)2 (4)f(x)=|x|;g(x)= (三)课堂练习 求下列函数的定义域 (1) (2) (3) (4) (5) (6) 三、归纳小结,强化思想 从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。 四、作业布置 课本P28习题1.2(A组)第1—7题(B组)第1题 高一数学教案10一、教学目标 知识与技能: 理解任意角的概念(包括正角、负角、零角)与区间角的概念。 过程与方法: 会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。 情感态度与价值观: 1、提高学生的推理能力; 2、培养学生应用意识。 二、教学重点、难点: 教学重点: 任意角概念的理解;区间角的集合的书写。 教学难点: 终边相同角的集合的表示;区间角的集合的书写。 三、教学过程 (一)导入新课 1、回顾角的定义 ①角的第一种定义是有公共端点的两条射线组成的图形叫做角。 ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。 (二)教学新课 1、角的有关概念: ①角的定义: 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。 ②角的名称: 注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角。 ⑤练习:请说出角α、β、γ各是多少度? 2、象限角的概念: ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。 例1、如图⑴⑵中的角分别属于第几象限角? 高一数学教案111.1 集合含义及其表示 教学目标:理解集合的概念;掌握集合的三种表示方法,理解集合中元素的三性及元素与集合的关系;掌握有关符号及术语。 教学过程: 一、阅读下列语句: 1) 全体自然数0,1,2,3,4,5, 2) 代数式 . 3) 抛物线 上所有的点 4) 今年本校高一(1)(或(2))班的全体学生 5) 本校实验室的所有天平 6) 本班级全体高个子同学 7) 著名的科学家 上述每组语句所描述的对象是否是确定的? 二、1)集合: 2)集合的元素: 3)集合按元素的个数分,可分为1)__________2)_________ 三、集合中元素的三个性质: 1)___________2)___________3)_____________ 四、元素与集合的关系:1)____________2)____________ 五、特殊数集专用记号: 1)非负整数集(或自然数集)______2)正整数集_____3)整数集_______ 4)有理数集______5)实数集_____ 6)空集____ 六、集合的表示方法: 1) 2) 3) 七、例题讲解: 例1、 中三个元素可构成某一个三角形的三边长,那么此三角形一定不是 ( ) A,直角三角形 B,锐角三角形 C,钝角三角形 D,等腰三角形 例2、用适当的方法表示下列集合,然后说出它们是有限集还是无限集? 1)地球上的四大洋构成的集合; 2)函数 的全体 值的集合; 3)函数 的全体自变量 的集合; 4)方程组 解的集合; 5)方程 解的集合; 6)不等式 的解的集合; 7)所有大于0且小于10的奇数组成的集合; 8)所有正偶数组成的集合; 例3、用符号 或 填空: 1) ______Q ,0_____N, _____Z,0_____ 2) ______ , _____ 3)3_____ , 4)设 , , 则 例4、用列举法表示下列集合; 1. 2. 3. 4. 例5、用描述法表示下列集合 1.所有被3整除的数 2.图中阴影部分点(含边界)的坐标的集合 课堂练习: 例6、设含有三个实数的集合既可以表示为 ,也可以表示为 ,则 的值等于___________ 例7、已知: ,若 中元素至多只有一个,求 的取值范围。 思考题:数集A满足:若 ,则 ,证明1):若2 ,则集合中还有另外两个元素;2)若 则集合A不可能是单元素集合。 小结: 作业 班级 姓名 学号 1. 下列集合中,表示同一个集合的是 ( ) A . M= ,N= B. M= ,N= C. M= ,N= D. M= ,N= 2. M= ,X= ,Y= , , .则 ( ) A . B. C. D. 3. 方程组 的解集是____________________. 4. 在(1)难解的题目,(2)方程 在实数集内的解,(3)直角坐标平面内第四象限的一些点,(4)很多多项式。能够组成集合的序号是________________. 5. 设集合 A= , B= , C= , D= ,E= 。 其中有限集的个数是____________. 6. 设 ,则集合 中所有元素的和为 7. 设x,y,z都是非零实数,则用列举法将 所有可能的值组成的集合表示为 8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= , 若A= ,试用列举法表示集合B= 9. 把下列集合用另一种方法表示出来: (1) (2) (3) (4) 10. 设a,b为整数,把形如a+b 的一切数构成的集合记为M,设 ,试判断x+y,x-y,xy是否属于M,说明理由。 11. 已知集合A= (1) 若A中只有一个元素,求a的值,并求出这个元素; (2) 若A中至多只有一个元素,求a的取值集合。 12.若-3 ,求实数a的值。 【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:集合含义及其表示能给您带来帮助! 高一数学教案12教学目标 会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。 重 点 函数单调性的证明及判断。 难 点 函数单调性证明及其应用。 一、复习引入 1、函数的定义域、值域、图象、表示方法 2、函数单调性 (1)单调增函数 (2)单调减函数 (3)单调区间 二、例题分析 例1、画出下列函数图象,并写出单调区间: (1) (2) (2) 例2、求证:函数 在区间 上是单调增函数。 例3、讨论函数 的单调性,并证明你的结论。 变(1)讨论函数 的单调性,并证明你的结论 变(2)讨论函数 的单调性,并证明你的结论。 例4、试判断函数 在 上的单调性。 三、随堂练习 1、判断下列说法正确的是 。 (1)若定义在 上的函数 满足 ,则函数 是 上的单调增函数; (2)若定义在 上的函数 满足 ,则函数 在 上不是单调减函数; (3)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数; (4)若定义在 上的函数 在区间 上是单调增函数,在区间 上也是单调增函数,则函数 是 上的单调增函数。 2、若一次函数 在 上是单调减函数,则点 在直角坐标平面的( ) A.上半平面 B.下半平面 C.左半平面 D.右半平面 3、函数 在 上是___ ___;函数 在 上是__ _____。 3.下图分别为函数 和 的图象,求函数 和 的单调增区间。 4、求证:函数 是定义域上的单调减函数。 四、回顾小结 1、函数单调性的判断及证明。 课后作业 一、基础题 1、求下列函数的单调区间 (1) (2) 2、画函数 的图象,并写出单调区间。 二、提高题 3、求证:函数 在 上是单调增函数。 4、若函数 ,求函数 的单调区间。 5、若函数 在 上是增函数,在 上是减函数,试比较 与 的大小。 三、能力题 6、已知函数 ,试讨论函数f(x)在区间 上的单调性。 变(1)已知函数 ,试讨论函数f(x)在区间 上的单调性。 高一数学教案13第一节 集合的含义与表示 学时:1学时 [学习引导] 一、自主学习 1.阅读课本 . 2.回答问题: ⑴本节内容有哪些概念和知识点? ⑵尝试说出相关概念的含义? 3完成 练习 4小结 二、方法指导 1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。 2、理解集合元素的特性,并会判断元素与集合的关系 3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。 4、在学习中要特别注意理解空集的意义和记法 [思考引导] 一、提问题 1.集合中的元素有什么特点? 2、集合的常用表示法有哪些? 3、集合如何分类? 4.元素与集合具有什么关系?如何用数学语言表述? 5集合 和 是否相同? 二、变题目 1.下列各组对象不能构成集合的是( ) A.北京大学2008级新生 B.26个英文字母 C.著名的艺术家 D.2008年北京奥运会中所设定的比赛项目 2.下列语句:①0与 表示同一个集合; ②由1,2,3组成的集合可表示为 或 ; ③方程 的解集可表示为 ; ④集合 可以用列举法表示。 其中正确的是( ) A.①和④ B.②和③ C.② D.以上语句都不对 [总结引导] 1.集合中元素的三特性: 2.集合、元素、及其相互关系的数学符号语言的表示和理解: 3.空集的含义: [拓展引导] 1.课外作业: 习题11第 题; 2.若集合 ,求实数 的值; 3.若集合 只有一个元素,则实数 的值为 ;若 为空集,则 的取值范围是 . 撰稿:程晓杰 审稿:宋庆 高一数学教案14学习目标: (1)理解函数的概念 (2)会用集合与对应语言来刻画函数, (3)了解构成函数的要素。 重点: 函数概念的理解 难点: 函数符号y=f(x)的理解 知识梳理: 自学课本P29—P31,填充以下空格。 1、设集合A是一个非空的实数集,对于A内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合A上的一个函数,记作 。 2、对函数 ,其中x叫做 ,x的取值范围(数集A)叫做这个函数的 ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。 3、因为函数的值域被 完全确定,所以确定一个函数只需要 。 4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验: ① ;② 。 5、设a, b是两个实数,且a (1)满足不等式 的实数x的集合叫做闭区间,记作 。 (2)满足不等式a (3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ; 分别满足x≥a,x>a,x≤a,x 其中实数a, b表示区间的两端点。 完成课本P33,练习A 1、2;练习B 1、2、3。 例题解析 题型一:函数的概念 例1:下图中可表示函数y=f(x)的图像的只可能是( ) 练习:设M={x| },N={y| },给出下列四个图像,其中能表示从集合M到集合N的函数关系的有____个。 题型二:相同函数的判断问题 例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与 ④ 与 其中表示同一函数的是( ) A. ② ③ B. ② ④ C. ① ④ D. ④ 练习:已知下列四组函数,表示同一函数的是( ) A. 和 B. 和 C. 和 D. 和 题型三:函数的定义域和值域问题 例3:求函数f(x)= 的定义域 练习:课本P33练习A组 4. 例4:求函数 , ,在0,1,2处的函数值和值域。 当堂检测 1、下列各组函数中,表示同一个函数的是( A ) A、 B、 C、 D、 2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( C ) A、5 B、-5 C、6 D、-6 3、给出下列四个命题: ① 函数就是两个数集之间的对应关系; ② 若函数的定义域只含有一个元素,则值域也只含有一个元素; ③ 因为 的函数值不随 的变化而变化,所以 不是函数; ④ 定义域和对应关系确定后,函数的值域也就确定了. 其中正确的有( B ) A. 1 个 B. 2 个 C. 3个 D. 4 个 4、下列函数完全相同的是 ( D ) A. , B. , C. , D. , 5、在下列四个图形中,不能表示函数的图象的是 ( B ) 6、设 ,则 等于 ( D ) A. B. C. 1 D.0 7、已知函数 ,求 的值.( ) 高一数学教案15学 习 目 标 1明确空间直角坐标系是如何建立;明确空间中任意一点如何表示; 2 能够在空间直角坐标系中求出点坐标 教 学 过 程 一 自 主 学 习 1平面直角坐标系建立方法,点坐标确定过程、表示方法? 2一个点在平面怎么表示?在空间呢? 3关于一些对称点坐标求法 关于坐标平面 对称点 ; 关于坐标平面 对称点 ; 关于坐标平面 对称点 ; 关于 轴对称点 ; 关于 对轴称点 ; 关于 轴对称点 ; 二 师 生 互动 例1在长方体 中, , 写出 四点坐标 讨论:若以 点为原点,以射线 方向分别为 轴,建立空间直角坐标系,则各顶点坐标又是怎样呢? 变式:已知 ,描出它在空间位置 例2 为正四棱锥, 为底面中心,若 ,试建立空间直角坐标系,并确定各顶点坐标 练1 建立适当直角坐标系,确定棱长为3正四面体各顶点坐标 练2 已知 是棱长为2正方体, 分别为 和 中点,建立适当空间直角坐标系,试写出图中各中点坐标 三 巩 固 练 习 1 关于空间直角坐标系叙述正确是( ) A 中 位置是可以互换 B空间直角坐标系中点与一个三元有序数组是一种一一对应关系 C空间直角坐标系中三条坐标轴把空间分为八个部分 D某点在不同空间直角坐标系中坐标位置可以相同 2 已知点 ,则点 关于原点对称点坐标为( ) A B C D 3 已知 三个顶点坐标分别为 ,则 重心坐标为( ) A B C D 4 已知 为平行四边形,且 , 则顶点 坐标 5 方程 几何意义是 四 课 后 反 思 五 课 后 巩 固 练 习 1 在空间直角坐标系中,给定点 ,求它分别关于坐标平面,坐标轴和原点对称点坐标 2 设有长方体 ,长、宽、高分别为 是线段 中点分别以 所在直线为 轴, 轴, 轴,建立空间直角坐标系 ⑴求 坐标; ⑵求 坐标; |
随便看 |
|
范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。