网站首页  词典首页

请输入您要查询的范文:

 

标题 集合的含义与表示练习题及答案
范文

集合的含义与表示练习题及答案

在学习、工作中,我们都可能会接触到练习题,多做练习方可真正记牢知识点,明确知识点则做练习效果事半功倍,必须双管齐下。什么样的习题才是好习题呢?以下是小编收集整理的集合的含义与表示练习题及答案,欢迎大家分享。

集合的含义与表示练习题及答案1

1.由实数x,-x,x2,-3x3所组成的集合里面元素最多有________个.

解析:x2=|x|,而-3x3=-x,故集合里面元素最多有2个.

答案:2

2.已知集合A=xN|4x-3Z,试用列举法表示集合A=________.

解析:要使4x-3Z,必须x-3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x=-1,1,2,4,5,7,要注意到元素x应为自然数,故A={1,2,4,5,7}

答案:{1,2,4,5,7}

3.集合{x|x2-2x+m=0}含有两个元素,则实数m满足的条件为________.

解析:该集合是关于x的一元二次方程的解集,则=4-4m0,所以m1.

答案:m1

4.用适当的方法表示下列集合:

(1)所有被3整除的整数;

(2)图中阴影部分点(含边界)的坐标的集合(不含虚线);

(3)满足方程x=|x|,xZ的所有x的值构成的集合B.

解:(1){x|x=3n,n

(2){(x,y)|-12,-121,且xy

(3)B={x|x=|x|,xZ}.

集合的含义与表示练习题及答案2

1.下列说法正确的是()

A.我校爱好足球的同学组成一个集合

B.{1,2,3}是不大于3的自然数组成的集合

C.集合{1,2,3,4,5}和{5,4,3,2,1}表示同一集合

D.数1,0,5,12,32,64, 14组成的集合有7个元素

答案:C

2.若集合A={-1,1},B={0,2},则集合{z|z=x+y,xA,yB}中的元素个数为()

A.5个 B.4个 C.3个 D.2个

答案:C

3.下列四个关系中,正确的是()

A.a{a,b} B.{a}{a,b}

C.a{a} D.a{a,b}

答案:A

4.集合M={(x,y)|xy0,xR,yR}是()

A.第一象限内的点集

B.第三象限内的点集

C.第四象限内的点集

D.第二、四象限内的点集

解析:集合M为点集且横、纵坐标异号,故是第二、四象限内的点集.

答案:D

5.若A={(2,-2),(2,2)},则集合A中元素的个数是()

A.1个 B.2个 C.3个 D.4个

答案:B

6.集合M中的元素都是正整数,且若aM,则6-aM,则所有满足条件的集合M共有()

A.6个 B.7个 C.8个 D.9个

解析:由题意可知,集合M中包含的元素可以是3,1和5,2和4中的一组,两组,三组,即M可为{3},{1,5},{2,4},{3,1,5},{3,2,4},{1,5,2,4},{3,1,5,2,4},共7个.

答案:B

7.下列集合中为空集的是()

A.{xN|x2 B.{xR|x2-1=0}

C.{xR|x2+x+1=0} D.{0}

答案:C

8.设集合A={2,1-a,a2-a+2},若4A,则a=()

A.-3或-1或2 B-3或-1

C.-3或2 D.-1或2

解析:当1-a=4时,a=-3,A={2,4,14};当a2-a+2=4时,得a=-1或2,当a=-1时,A={2,2,4},不满足互异性,当a=2时,A={2,4,-1}.a=-3或2.

答案:C

9.集合P={x|x=2k,kZ},Q={x|x=2k+1,kZ},M={x|x=4k+1,kZ},若aP,bQ,则有()

A.a+bP

B.a+bQ

C.a+bM

D.a+b不属于P、Q、M中任意一个

解析:∵aP,bQ,a=2k1,k1Z,b=2k2+1,k2Z,a+b=2(k1+k2)+1,k1,k2Z,a+bQ.

答案:B

10.由下列对象组成的集体,其中为集合的是________(填序号).

①不超过2的正整数;

②高一数学课本中的所有难题;

③中国的高山;

④平方后等于自身的实数;

⑤高一(2)班中考500分以上的学生.

答案:①④⑤

11.若a=n2+1,nN,A={x|x=k2-4k+5,kN},则a与A的关系是________.

解析:∵a=n2+1=(n+2)2-4(n+2)+5,且当nN时,n+2N.

答案:aA

12.集合A={x|xR且|x-2|5}中最小整数为_______.

解析:由|x-2|-5x-2-37,最小整数为-3.

答案:-3

13.一个集合M中元素m满足mN+,且8-mN+,则集合M的元素个数最多为________.

答案:7个

14.下列各组中的M、P表示同一集合的是________(填序号).

①M={3,-1},P={(3,-1)};

②M={(3,1)},P={(1,3)};

③M={y|y=x2-1,xR},P={a|a=x2-1,xR};

④M={y|y=x2-1,xR},P={(x,y)|y=x2-1,xR}.

答案:③

能力提升

15.已知集合A={x|xR|(a2-1)x2+(a+1)x+1=0}中有且仅有一个元素,求a的值.

解析:(1)若a2-1=0,则a=1.当a=1时,x=-12,此时A=-12,符合题意;当a=-1时,A=,不符合题意.

(2)若a2-10,则=0,即(a+1)2-4(a2-1)=0a=53,此时A=-34,符合题意.综上所述,a=1或53.

16.若集合A=a,ba,1又可表示为{a2,a+b,0},求a20xx+b20xx的值.

解析:由题知a0,故ba=0,b=0,a2=1,

a=1,

又a1,故a=-1.

a20xx+b20xx=(-1)20xx+02013=1.

17.设正整数的集合A满足:“若xA,则10-xA”.

(1)试写出只有一个元素的集合A;

(2)试写出只有两个元素的集合A;

(3)这样的集合A至多有多少个元素?

解析:(1)令x=10-xx=5.故A={5}.

(2)若1A,则10-1=9A;反过来,若9A,则10-9=1A.因此1和9要么都在A中,要么都不在A中,它们总是成对地出现在A中.同理,2和8,3和7,4和6成对地出现在A中,故{1,9}或{2,8}或{3,7}或{4,6}为所求集合.

(3)A中至多有9个元素,A={1,9,2,8,3,7,4,6,5}.

18.若数集M满足条件:若aM,则1+a1-aM(a0,a1),则集合M中至少有几个元素?

解析:∵aM,1+a1-aM,1+1+a1-a1-1+a1-a=-1aM,

1-1a1+1a=a-1a+1M,1+a-1a+11-a-1a+1=aM.

∵a0且a1,a,1+a1-a,-1a,a-1a+1互不相等集合M中至少有4个元素.

集合的含义与表示练习题及答案3

试题

选择题

1. 下列八个关系式①{0}= ② =0 ③ {} ④ {} ⑤{0}

⑥0 ⑦ {0} ⑧ {}其中正确的个数

(A)4 (B)5 (C)6 (D)7

2.集合{1,2,3}的真子集共有

(A)5个 (B)6个 (C)7个 (D)8个

3.集合A={x } B={} C={}又 则有

(A)(a+b) A (B) (a+b) B (C)(a+b) C (D) (a+b) A、B、C任一个

4.设A、B是全集U的两个子集,且A B,则下列式子成立的是

(A)CUA CUB (B)CUA CUB=U

(C)A CUB= (D)CUA B=

5.已知集合A={}, B={}则A =

(A)R (B){}

(C){} (D){}

6.下列语句:(1)0与{0}表示同一个集合; (2)由1,2,3组成的集合可表示为

{1,2,3}或{3,2,1}; (3)方程(x-1)2(x-2)2=0的所有解的集合可表示为 {1,1,2}; (4)集合{}是有限集,正确的是

(A)只有(1)和(4) (B)只有(2)和(3)

(C)只有(2) (D)以上语句都不对

7.设S、T是两个非空集合,且S T,T S,令X=S 那么S∪X=

(A)X (B)T (C)Φ (D)S

8设一元二次方程ax2+bx+c=0(a<0)的根的判别式 ,则不等式ax2+bx+c 0的解集为

(A)R (B) (C){} (D){}

填空题

9.在直角坐标系中,坐标轴上的点的集合可表示为

10.若A={1,4,x},B={1,x2}且A B=B,则x=

11.若A={x } B={x },全集U=R,则A =

12.若方程8x2+(k+1)x+k-7=0有两个负根,则k的取值范围是

13设集合A={},B={x },且A B,则实数k的取值范围是。

14.设全集U={x 为小于20的非负奇数},若A (CUB)={3,7,15},(CUA) B={13,17,19},又(CUA) (CUB)= ,则A B=

解答题

15(8分)已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1}, 若A B={-3},求实数a。

16(12分)设A= , B= ,

其中x R,如果A B=B,求实数a的取值范围

答案

选择题

1 2 3 4 5 6 7 8

C C B C B C D D

填空题

9.{(x,y) } 10.0, 11.{x ,或x 3} 12.{} 13.{} 14.{1,5,9,11}

解答题

15.a=-1

16.提示:A={0,-4},又A B=B,所以B A

(Ⅰ)B= 时, 4(a+1)2-4(a2-1)<0,得a<-1

(Ⅱ)B={0}或B={-4}时, 0 得a=-1

(Ⅲ)B={0,-4}, 解得a=1

综上所述实数a=1 或a -1

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2025/6/1 21:08:47