网站首页  词典首页

请输入您要查询的范文:

 

标题 八年级上册数学教学工作计划
范文

八年级上册数学教学工作计划锦集九篇

人生天地之间,若白驹过隙,忽然而已,我们的工作同时也在不断更新迭代中,让我们对今后的工作做个计划吧。相信大家又在为写计划犯愁了吧?下面是小编为大家整理的八年级上册数学教学工作计划10篇,希望对大家有所帮助。

八年级上册数学教学工作计划 篇1

多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。在此为您提供八年级上册数学勾股定理教学计划,希望给您学习带来帮助,使您学习更上一层楼!

一、内容和内容解析

本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:20xx年北京召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生进行爱国主义教育的良好素材。教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理进行了详细的论证;课后习题18.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以巩固,特别是第11、12题侧重对面积法运用的巩固。

勾股定理是几何中几个重要定理之一,揭示了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门基础学科,是人们生活的基本工具。

学生接受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。学生接受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法进行演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。

本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量紧密的结合,将有利的培养学生数形结合的意识以提高学生分析问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定基础,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,教学重点:勾股定理的内容 教学难点:勾股定理的论证

二、教学目标及目标解析

1、教学目标

①、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。

②、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

③通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。

④、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。

2、目标解析

①、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿接受这一理论事实并能简单运用。

②、通过面积法探究勾股定理,让学生感触到直角三角形这一图形与a2+b2=c2 数量关系建立对应关系,同时不同图形从面积角度的论证得到面积的割补是形的变化而面积这一数量不变。更深层次的建立数形结合的方法。

③、通过观察、探究的活动让学生感触知识的产生过程,学生从中学会合作交流,协作探究、归纳总结的学习方法,提高学生的探索能力。

④、勾股定理知识是我国数学领域的璀璨明珠,代表着历代人民智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。

三、教学问题诊断分析

学生对勾股定理的形式容易接受甚至利用结论进行有关的计算难度也不大,但究其缘由有难度,这正是数学学习活动中学生要具备的基本的学习品质和学习技能。所以,在学习勾股定理由来的教学时,应有针对性地设计图形形式的多样呈现,让学生亲自动手拼接图形来揭示概念的由来及正确性。

对于图形面积的计算学生有基本的技能,但如何最合理的进行分割或补全一时是不易理解,这属于思想方法层面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我进行精心的设计,充分展示“分割、补全、拼凑”以发挥教师的引导作用,为学生探究一般的直角三角形的三边关系做好铺垫,为数学多渠道多方法的探究证明做好引导。

四、教学支持条件分析

根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现、动手操练、演算探究为主,多媒体演示为辅的教学组织方式.在教学过程中,给学生提供充足的活动时间和空间,以我设计探究实验和带有启发性及思考性的问题串,创设问题情景,启发学生思维,学生亲自动手操作、测量、演算,让学生亲身体验知识的产生、发展和形成的过程.

五、教学过程设计

(一)创设情境,导入新课。

问题1:请同学们欣赏20xx年国际数学家大会会场情景的的图片,重点抽取会徽图案,你能发现它是有什么图形构成的?(材料附后)

教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”,学生观察、发表意见、聆听介绍。

【设计意图】以国际数学家大会------“赵爽弦图”为背景导入新课,提出问题,首先可以激发学生强烈的好奇心和求知欲,感受我国古代数学知识的伟大,进行爱国教育,增强学好数学的信心;其次让学生在观察、思考、交流的过程中,对勾股定理先有初步的感性认识.

方案1:如果学生能够说出勾股定理的相关知识,则直接

进入下一环节的学习。

方案2:如果学生有困难,则安排学生自学教材,再发表意见。

学生发言,教师倾听。视学生回答的重点 板书 :勾三股四弦五 等

【设计意图】教师获得学生的知识储备以便以后的教学定位。再次让学生感触勾股定理的存在、作用即勾股定理是研究直角三角形边之间的关系的定理,明确学习目标。

(二)观察演算,合作探究,初具概念

问题3:介绍毕达哥拉斯发现勾股定理的故事。利用ppt课件展示毕达哥拉斯的发现和他的探究的过程。提问:这三个正方形之间的面积有什么关系?从中可以转化得到等腰直角三角形三边在数量上有什么关系? (故事附后)

教师口述故事,ppt课件同步演示;学生借助直观的课件,学生个体或学生间观察交流探究得到结论。

【设计意图】首先,故事中代出问题既激发学生的兴趣又降低了学生探究的难度,让每个学生都可做,可得;其次得到三个正方形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。

问题4:毕达哥拉斯想到:这一结论是不是所有的直角三角形都具备呢?于是展开了进一步的探索。

教师利用ppt课件展示,提出问题;学生利用《学习案》中第1题自己进一步探究,交流;猜测验证。(学习案附后)

【设计意图】问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。

问题5:你是怎样演算的?

教师关注学生之间的交流,关注学生借助面积法探究问题的不同解法,选取代表性的方法演示。学生个体或小组探究、交流。

视学生的学习情况确定下步的教学:

方案1:学生能够用面积分割法如图一或用面积补全法如图二的方法验证了结论,则直接进行下一步的教学。

方案2:学生不能够得到,探究学习有困难,则教师借助ppt课件演示,精讲点拨面积的割补法,对命题进行验证。

【设计意图】教无定法,视学定教;学生是学习的主人,教师是学生学习的合作者。学生亲自画图,演算,利于对结论的理解。亲身感受知识的产生、形成,初步体会面积法;再次了解勾股定理。

问题6:通过我们大家一起的实验,你得到任意直角三角形的三边之间有什么关系吗?试用语言描述。

学生描述,教师板书。

【设计意图】加深对勾股定理内容的叙述、理解,达成目标。体会数学观察---探究---整理----归纳的.数学方法,体验学习的成功。

(三)引导实验,探究论证,形成体系。

问题7:我们已经对直角三角形三边之间关系有了充分的认识。但它的正确性需要数学理论做基础,我国古代数学家赵爽就对该命题进行了严谨的论证。我们刚才欣赏的会徽就是他的论证方法。下面我们一起进行论证。

教师用ppt课件演示拼凑过程,精讲强调面积的无缝、不重叠拼接得到面积相等。

【设计意图】上一环节是从数字上的验证,本环节上升到理论层面,以加强数学学习的严谨性。让学生学懂面积法,再次加深对勾股定理的理解。感受我国数学知识的悠久历史,唤起爱国精神,启发学习数学的兴趣。

问题8:学生用4个全等的直角三角形重新拼凑图形并根据排放 画出图形并用面积法进行论证。

学生或小组间进行合作实验,共同协作探究;教师巡视指导。

【设计意图】学生自主探究,再次理解勾股定理,学会面积法论证勾股定理。培养学生的动手探究能力,养成严谨的学习习惯;学会交流,达到知识、方法共享,体验合作的乐趣、合作的成功。

问题9:教师选取代表性的拼接方法,全班展示。

【设计意图】共享知识,拓展思路,体会一题多解,更深层次的了解掌握勾股定理。

(四)归纳提高,巩固运用,形成能力。

问题10:我们这节课研究的勾股定理是对什么的研究?它侧重是研究直角三角形的什么关系?以前学习直角三角形的哪些知识?

学生回忆,发言。教师强调:勾股定理的前提条件是直角三角形,也就是说其他的三角形是不具备的,但要解决其他三角形的计算问题,我们要借助辅助线(特别是高线)把它转化为直角三角形。教师板书。

【设计意图】更新知识系统,逐渐完善知识脉络,提高分析问题解决问题的能力。

问题11:完成以下练习题

教材69页第1题、

学生独立完成;教师巡视指导,板书得数,介绍勾股数。

【设计意图】第1题针对勾股定理的直接运用。提高学生对新知识的理解、运用。巩固目标。

(五)归纳小结,反思提高

问题12:通过本节课的学习,你有哪些收获?

学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法及评价学生在课堂上的表现对学生进行思想教育。

【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对直角三角形有一个整体全面认识,同时感受数形结合的数学思想。

小编为大家提供的八年级上册数学勾股定理教学计划大家仔细阅读了吗?最后祝同学们学习进步。

八年级上册数学教学工作计划 篇2

一、学术条件分析

八年级是初中学习过程中的关键时期,起着承上启下的作用。下学期尤为重要,因为学生的基础会直接影响到以后能否上学。通过上学期的学习,学生的计算能力、阅读理解能力和实践探究能力得到了发展和培养。他们对图形及其数量关系有了初步的认识,逻辑思维和逻辑推理能力得到了发展和培养。通过教育教学,大多数学生可以认真对待每一项作业,及时纠正作业中的错误。他们可以在课堂上集中精力学习和思考,学习兴趣得到了激发和进一步发展。本学期将继续促进学生的自主学习,让学生参与活动,探索发现,用自己的经历获得知识和技能;努力实现基础与现代性的统一,提高学生的创新精神和实践能力;进一步激发学生对数学的兴趣和爱好,通过各种教学方法帮助学生理解概念、操作运算、拓展思维。为了在这一时期取得理想的效果,教师和学生都应该努力检查和弥补差距,充分发挥学生作为学习的主体和教师作为教学的主体,注重方法和能力的培养。关注学困生和女生。

二、教材分析

本学期的教学内容由五章组成,包括知识的联系、教学目标、重点和难点分析如下:

第十六章二次部首

本章的'主要内容是二次根式的概念、性质、简化和计算。本章重点了解二次根式的性质、简化和计算。本章的难点是正确理解二次根式的性质和算法。

第十七章勾股定理

直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角相辅相成,与30度相对的右边等于斜边的一半。本章研究的勾股定理也是直角三角形的一个性质,也是一个很重要的性质。本章分为两节。第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。

第十八章平行四边形

四边形是人们日常生活中广泛使用的图形,特别是平行四边形、矩形、菱形、正方形等特殊的四边形。因此,四边形不仅是几何学中的基本图形,也是“空间与图形”领域的主要研究对象之一。这一章是基于学生前一期所学的四边形知识,以及这一期所学的多边形、平行线、三角形的相关知识。也可以说是在现有知识的基础上做进一步的系统整理和研究。本章的学习也是反复运用平行线和三角形的知识。从这个角度来说,本章的内容也是对前面平行线和三角形的应用和深化。

第十九章线性函数

一阶函数通过对变量的考察,可以了解函数的概念,进一步研究最简单的函数之一,——一阶函数。了解函数的相关性质和研究方法,初步形成从函数的角度认识现实世界的意识和能力。在教材中,通过体现“问题情境——”——建立数学模型——的概念、规律、应用和拓展模式,学生可以从实际问题情境中抽象出函数和初等函数的概念,探索初等函数及其图像的性质,最终利用初等函数及其图像解决相关的实际问题;同时,在教学顺序上,将比例函数纳入线性函数的学习。文本框

本章主要研究均值、中位数、众数、极差、方差等统计量的统计意义。并学习如何使用这些统计数据来分析数据的集中趋势和分散程度。通过研究如何利用样本的均值和方差来估计总体的均值和方差,可以进一步理解用样本估计总体的思想。

大家都在关注苏联档案解密:朝鲜战争欺骗了历史

20xx年人民教育版八年级数学教案和教学进度

三、提高学科教育质量的主要措施:

1、努力搞好教学八项。重视教学八项作为提高成绩的主要方法,认真学习新课程标准和新教材,根据新课程标准拓展教材内容;认真听课,批改作业,给予指导,做试卷,也能帮助学生学会努力学习。

2.爱因斯坦说,对它感兴趣的老师。激发学生兴趣,向学生介绍数学家和数学史,介绍相应的有趣的数学题,给出课外数学思维题,激发学生兴趣。

3.引导学生积极参与知识建设,营造民主、和谐、平等、自主、探究、合作、交流、共享的高效学习课堂,让学生体验学习的乐趣,享受学习的乐趣。引导学生写小论文,复习提纲,让知识来源于学生的结构。

4.引导学生主动总结解题规律,引导学生一题多解,统一多解,培养学生透过现象看本质,提高举一反三的能力,是提高学生素质的根本途径之一。

5.用新课标的理念来指导教学,积极更新你头脑中固有的教育理念。不同的教育理念会带来不同的教育效果。

6.探究性问题的研究、课后调查和操作实践将带动班级学生学习数学,同时发展他们的专业。

7.进行分层教学,将作业安排在A、B、c三类,分层安排适合差、中、好学生,课堂提问照顾好,中、差

八年级上册数学教学工作计划 篇3

教学目标:

1、了解勾股定理及其逆定理的证明方法

2、结合具体例子了解逆命题的概念,会识别两个互逆命题、知道原命题成立其逆命题不一定成立。

教学重点、难点:进一步掌握演绎推理的方法。

教学过程:

一、 温故知新

1、你记得勾股定理的内容吗?你曾经用什么方法得到了勾股定理?

(由学生回顾得出勾股定理的内容。)

定理:直角三角形两条直角边的平方和等于斜边的平方。

二、 学一学

1、问题情境:在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的`方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?

已知:在ΔABC中,AB2+AC2=BC2

求证:ΔABC是直角三角形

A

B

C

(讲解证明思路及证明过程,引导学生领会证明思路及证明过程,得出结论。)

结论:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

2、议一议:

观察下列三组命题,它们的条件和结论之间有怎样的关系?

如果两个角是对顶角,那么它们相等。

如果两个角相等,那么它们是对顶角。

如果小明患了肺炎,那么他一定会发烧。

如果小明发烧,那么他一定患了肺炎。

三角形中相等的边所对的角相等。

三角形中相等的角所对的边相等。

(引导学生观察这些成对命题的条件和结论之间的关系,归纳出它们的共性,进一步得出“互逆定理”的概念。)

3、关于互逆命题和互逆定理。

(1)在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。

(2)一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。

(引导学生理解掌握互逆命题的定义。)

4、练习:

(1) 写出命题“如果有两个有理数相等,那么它们的平方相等”的逆命题,并判断是否是真命题。

(2) 试着举出一些其它的例子。

(3) 随堂练习 1

5、读一读“勾股定理的证明”的阅读材料。

6、课堂小结:本节课你都掌握了哪些内容?

(引导学生归纳总结,互逆定理的定义及相互间的关系。)

三、 作业

1、基础作业:P20页习题1.4 1、2、3。

2、拓展作业:《目标检测》

3、预习作业:P21-22页 做一做

八年级上册数学教学工作计划 篇4

在每一门课的复习中,不同阶段以不同内容为主,多看课本或多做习题,要掌握好。本文为大家提供了八年级上册数学分式方程教学计划表,希望对大家的学习有一定帮助。

一、教学目标

1.使学生理解分式方程的意义.

2.使学生掌握可化为一元一次方程的分式方程的一般解法.

3.了解解分式方程解的检验方法.

4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.

5.通过学习分式方程的解法,使学生理解解分式方程的`基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.

二、教学重点和难点

1.教学重点:

(1)可化为一元一次方程的分式方程的解法.

(2)分式方程转化为整式方程的方法及其中的转化思想.

2.教学难点:检验分式方程解的原因

3.疑点及分析和解决办法:

解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.

三、教学方法

启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.

四、教学手段:

演示法和同学练习相结合,以练习为主.

五、教学过程

(一)复习引入

1.提问:什么叫方程?什么叫方程的解? 答:含有未知数的等式叫做方程.

使方程两边相等的未知数的值,叫做方程的解.

(二)新知探索

板书课题:分式方程的定义.

分母中含有未知数的方程叫分式方程(fractional equation).以前学过的方程都是整式方程.(课件展示)

(三)作业布置

必做:课本82页,习题3.7,A组第1、2题。

选作:课本82页,习题3.7,A组第3题;B组第1题。

八年级上册数学教学工作计划 篇5

以《初中数学新课程标准》为指导,贯彻党的教育方针,开展新课程教学改革,对学生实施素质教育,切实激发学生学习数学的兴趣,掌握学习数学的方法和技巧,建立数学思维模式,培养学生探究思维的能力,提高学习数学、应用数学的能力。同时通过本期教学,完成八年级上册数学教学任务。二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。上学年学生期末考试的成绩平均分为38分,总体来看,成绩只能算一般。在学生所学知识的掌握程度上,整个班级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养。在以后的教学中,对有条件的孩子应鼓励他们买课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的`习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

二、教学目标

1、知识与技能目标

学生通过探究实际问题,认识三角形、全等三角形、轴对称、整式乘除和因式分解、分式,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过全等三角形的学习初步建立数形结合的思维模式。

2、过程与方法目标

掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。

3、情感与态度目标

通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

三、教材分析

第十一章 本章主要内容初步了解三角形有关的概念及多边形有关的知识。为下一章全等三角形的学习打下基础。多边形的内角和的推导过程体现了数学中的转化思想。

第十二章 全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十三章 轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十四章 整式的乘法与因式分解 整式在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

第十五章分式是解决问题的一种模式,它与数,因式分解和一元二次方程有着密切的联系,因此可以加强它们知识间的纵向联系。可以培养学生的合情推理和代数恒等变形能力,注重自主探索合作交流的能力的培养。

四、教学措施

1、认真学习钻研新课标,掌握教材;课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

2、认真备课、精心授课,抓紧课堂四十五分钟,认真上好每一堂课,争取充分掌握学生动态,努力提高教学效果。

3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫;落实每一堂课后辅助,查漏补缺。

4、不断改进教学方法,提高自身业务素养。积极与其它老师沟通,加强教研教改,提高教学水平。

5、教学中注重自主学习、合作学习、探究学习。

6.经常听取学生良好的合理化建议。

7.以“两头”带“中间”战略思想不变。深化两极生的训导。

6、精选例题,注重例题的代表性,典型性。练习题应有层次性,既有基础的性的,又有拔高性的。

五、教学进度

八年级上册数学教学工作计划 篇6

一、教学目标

(一)知识目标

1.会用计算器求平方根和立方根.

2.经历运用计算器探求数学规律的活动,发展合情推理的能力.

(二)能力训练目标

1.鼓励学生能积极参与数学学习活动,对数学有好奇心与求知欲.

2.鼓励学生自己探索计算器的用法,并能熟悉用法.

3.能用计算器探索有关规律的问题,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

(三)情感与价值观目标

让学生经历运用计算器的活动,培养学生探索规律的能力,发展学生合理推理的能力.

二、教学重点、难点

1.探索计算器的用法.

2.用计算器探求数学规律.

三、教学方法

学生自主探究法.

四、教学过程

(一)新课导入

我们在前几节课分别学习了平方根和立方根的定义,还知道乘方与开方是互为逆运算. 比如23=8,2叫8的立方根,8叫2的立方,有时可以根据逆运算来求方根或平方、立方.对于10以内数的立方,20以内数的平方要求大家牢记在心,这样可以根据逆运算快速地求出这些特殊数的平方根或立方根,那么对于不特殊的数我们应怎么求其方根呢?可以根据估算的`方法来求,但是这样求方根的速度太慢,这节课我们就学习一种快速求方根的方法,用计算器开方.

(二)新课讲解 【师】请大家互相看一下计算器,拿类型相同的计算器的同学请坐到一起.这样便于大家互相讨论问题.如果你的计算器的类型与书中的计算器的类型相同,请你按照书中的步骤熟悉一下程序,若你的计算器的类型不同于书中的计算器,请拿相同类型计算器的同学先要探索一下如何求平方根、立方根的步骤,把程序记下来,好吗?给大家8分钟时间进行探索.

五、课堂小结

1.探索用计算器求平方根和立方根的步骤,并能熟练地进行操作.

2.经历运用计算器探求数学规律的活动,发展合情推理的能力.

八年级上册数学教学工作计划 篇7

一、学生起点分析

学生的知识基础:学生在七年级上册教材中已经学习过了尺规作图。其中包括理解尺规作图的含义,能完成作一条线段等于已知线段、作一个角等于已知角的基本作图,初步掌握了尺规作图。而对于三角形,它是最简单、最基本的几何图形,学生在生活中随处可见。并且在本章的前4节中学生已经对三角形的有关概念及相关结论有了进一步的学习,如认识三角形、全等三角形、探索三角形全等条件。学生已经初步具备了作三角形的基本知识与技能。

学生的活动经验:在相关知识的学习过程中,学生已经经历了观察、折纸、拼图、画图、想象、推理、交流等活动,发展了空间观念,积累了一些数学活动经验,具备了一定的动手实践与合作交流能力。

二、教学任务分析

在学生现有的知识和活动经验的基础上,提出具体的教学及学习任务:在分别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形,并能用自己的语言表述作图的过程。学生在本学段完成后会书写“已知、求作和作法”。能结合三角形全等条件与同伴交流作图过程和结果的合理性。为此,本节课的教学目标是:

1.经历尺规作图实践操作过程,训练和提高学生的尺规作图的技能,能根据条件作出三角形。

2.能依据规范作图语言,作出相应的图形,在实践操作过程中,逐步规范作图语言。

3.通过与同伴交流作图过程和结果的合理性,体会对问题的说明要有理有据。

三、教学设计分析

本节课设计了7个环节:情境引入、作三角形、合作分享、基础练习、拓展提高、课堂小结、布置作业。

第一环节 情境引入

活动内容:首先提出“豆豆书上的三角形被墨迹污染了一部分,你能帮他在作业本上画出一个与书上完全一样的三角形吗?”的问题,自然地引发学生思考“如何作一个三角形与已有的三角形一样呢?”与此同时引导学生回顾三角形的基本元素,以及学过的基本作图 ——作一条线段等于已知线段、作一个角等于已知角。学生思考后独立回答。对于两种基本尺规作图,找两名学生板演示范,其他学生在练习本上做。完成后,请学生试着叙述作法,教师规范学生的语言。

活动目的:通过学生处理身边经历过的事情,激发学生学习数学的兴趣,培养学生的善于观察生活,并能从生活中提炼出数学模型的能力。同时对两个基本尺规作图的复习是为后面的学习做铺垫。自然引出本节课的主要研究内容“如何利用尺规作一个三角形与已知三角形全等呢?”

实际教学效果:学生一开始在问题情境下进行积极思考,思考各种办法进行解决,如:用一张薄纸覆盖在三角形上,描出来未被污染的部分,将污染了一部分的两边延长,两边相交,即恢复成了原来的三角形。提出方案的同时,引导学生考虑方案的可行性。此时,教师与学生一起回顾三角形的'基本元素,及尺规的基本作图——作线段、作角。学生能熟练的画一条线段等于已知线段,并用语言描述作图过程。而对于画一个角等于已知角,有些学生作起来稍显困难,需教师重新示范,并说明作图过程。在这一复习过程中,教师对做得好的学生给予鼓励,说明学习知识要扎实,基础打得好后续的学习才会比较容易。

  第二环节 作三角形

活动内容:师生共同探索、研究、交流、经历利用尺规作三角形,学生用自己的语言表述作图的过程。本环节学生要按要求完成三个尺规作三角形的内容:

(1) 已知三角形的两角及其夹边,求作这个三角形;(豆豆所求助的三角形) (2) 已知三角形的两边及其夹角,求作这个三角形; (3) 已知三角形的三边,求作这个三角形。

首先,学生在教师的引导下分析、交流作三角形时作边与角的先后顺序,再作所求的三角形。第一个作图教师给出作法,并演示作图过程,让学生进行模仿操作;第二个作图只给出作法,不演示,让学生根据已知步骤独立作出图形;第三个作图让学生自己探索作法,并独立作出图形。学生在每个作图完成后,进一步思考“还有没有其他的作法?”,思考后进行操作,尝试表述作图过程,并组织全班进行交流。再提出“大家画出的三角形是否全等”的问题供学生讨论。

活动目的:本环节通过分析—操作—再分析的形式培养学生分析和解决问题的能力。学生通过经历从模仿、独立完成作图、到探索作图的过程,巩固尺规作图的技能,循序渐进的会书写“已知、求作和作法”。在完成三个作图后,都鼓励学生比较各自所作的三角形,利用重合等直观方式观察所作出的三角形是否全等。在此基础上,还引导学生利用已经获得的三角形全等的条件来说明大家所作出的三角形一定是全等的,即说明作法的合理性。这实际上体现了直观操作与推理的相结合,并从中也使学生意识到这两种方法的不同。

实际教学效果:在教师示范第一个作图之后,学生能够学着模仿分析和操作下面的作图,并且在不断地作一个角等于已知角的过程中,逐渐达到熟练。从而,学生可以自己探索作法,并独立作出图形。在整个过程中,学生的画图要比表述作图过程(即写作法)显得自如,有信心。大多数学生对“用准确的语言描述作图过程”感到有很大的困难。即使这样,也要鼓励学生亲自张嘴说一说,尽他的最大可能描述自己的作图顺序及过程,教师即时地加以引导、完善、规范作图所用的语言。使学生可以很快地自己独立完成作图和作法。本环节注意模仿与自主学习的相结合,给学生一个展示自己思维的平台。

学生在完成每一个作图后,都要思考“依据给出的条件作出的三角形会全等吗?”学生能够很好地根据刚刚学过的三角形全等的判别方法中的“ASA”、“SAS”和“SSS”来进行说明,从中体会做法的合理性以及直观操作与推理的相结合。

第三环节 合作分享

活动内容:以4人合作小组为单位,根据问题开展活动。

问题(1)你都知道有哪些常用的作图语言可以用于描述作图过程(即作法)?

问题(2)我们是如何分析作图题的?它的步骤是什么?

活动目的:学生通过前一环节的实践操作,已经有了一定的作图经验。在此基础上提出这两个问题是为了让学生对刚刚的作图过程进行回顾、总结,培养学生善于思考,善于归纳数学方法的能力,并加强学生的语言表达能力。这一环节无论是对已完成的实践操作,还是下面的实战练习都起到至关重要的作用——承上启下。

实际教学效果:各合作小组成员在已有的作图经验基础上积极参与,各抒己见,尽可能多的挖掘作图语言和详细的分析步骤,一派紊而不乱的讨论气氛。最后各小组把自己的研究成果在全班进行展示,与大家分享。在分享的同时全班进行交流,取长补短,使语言更加规范、精练。达到集思广益、互帮互助的教学效果。

八年级上册数学教学工作计划 篇8

一.指导思想

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生学习主体作用,注重方法,培养能力。

我校七年级下学期学生期末考试的成绩平均分不是很好,总体来看,成绩很低。在学生所学知识的掌握程度上,整个年级已经开始出现两极分化了,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,对后进生来说,简单的基础知识还不能有效的掌握,成绩较差,学生仍然缺少大量的推理题训练,推理的思考方法与写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻。在学习能力上,学生课外主动获取知识的能力较差,为减轻学生的经济负担与课业负担,不提倡学生买教辅参考书,学生自主拓展知识面,向深处学习知识的能力没有得到培养,在以后的教学中,对有条件的孩子应鼓励他们买课外参考书,不一定是教辅参考书,有趣的课外数学读物更好,培养学生课外主动获取知识的能力。学生的逻辑推理、逻辑思维能力,计算能力需要得到加强,以提升学生的整体成绩,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,课堂作业,大部分学生能认真完成,少数学生需要教师督促,这一少数学生也成为老师的重点牵挂对象,课堂家庭作业,学生完成的质量要打折扣;学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,比较多的学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

三、教材分析

第十一章全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十二章轴对称立足于生活经验和数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的`概念。

第十三章实数主要介绍了平方根、算术平方根、立方根实数的概念。理解乘方与开方之间是互为逆运算的关系。了解无理数和实数的概念,知道实数和数轴上的点一一对应。能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算,会用计算器进行实数的运算。

第十四章一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数————一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境————建立数学模型————概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。

第十五章整式在形式上力求突出:整式及整式运算产生的实际背景————使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程————为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握————设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

四、教学措施

1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。

3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。

4、不断改进教学方法,提高自身业务素养。

5、教学中注重自主学习、合作学习、探究学习。

八年级上册数学教学工作计划 篇9

新的学年又开始了,在去年的教学工作中,我们数学组取得了一定的成绩,但也存在不少的问题。为了在新学年里,继往开来,发挥优势,弥补不足,为了使八年级数学成绩能有所提高,取得更大成绩,特制定教学工作计划如下:

一、指导思想

本学期,我们将在校长室及教务处的领导下,坚持学校制定的“以教学为中心,把质量当根本”的原则,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学生情况分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来能否升学。本人所教八年级2班,学生无尖子生,中等生多,有三分之一的学习不爱学习,问题较严重,要想获得理想的成绩,老师和学生都要付出努力,查缺补漏,充分发挥学生的主体作用,注重方法,培养能力。

三、教材分析

第十一章全等三角形,主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索全等三角形的.条件。

第十二章,轴对称立足于生活经验和数学活动经历,从观察生活中的轴对称,从整体的角度直观地认识并概括出轴对称的特征,通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十三章,实数主要包括算术平方根、平方根、立方根以及实数的有关概念和运算。

第十四章,一次函数通过对变量的考察,体会函数的概念,并逐步研究其中最为简单的一种函数——一次函数。了解函数的有关性质和研究方法,并初步形成利用函数观点认识现实世界的意识和能力。在教材中,通过体现“问题情境-建立模型-概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题。

第十五章,整式的乘除与因式分解,在形式上国求突出:整式及整式运算产生的实际背景——使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置归纳、类比等活动,对算理的理解和基本运算技能的掌握——设置恰当数量和难度的的符号运算,同时要求学生说明运算的依据。

四、教学措施

1、课堂上注重学生动手能力,排除学习中的障碍。

2、认真备课,精心授课,抓紧课堂四十分钟,努力提高课堂教学效果。

3、抓住关键,分散难点,突出重点,在培养学生能力上下功夫。

4、不断改进教学方法,提高自身业务素质。

5、教学中注重自主学习,合作学习,探险究学习。

五、教学进度

时间 教学内容

一周 (9.1——9.7) 检查作业 复习旧知 讲解11.1

二周 11.2 全等三角形的判定

三周 11.3角平分线的性质、小结

四周 12.1节 轴对称

五周 12.2作轴对称图形

六周 国庆放假

七周 12.3 等腰三角形小结

八周 13.113.2

九周 13.3节 小结

十周 期中复习

十一周 期中考试

十二周 14.1

十三周 14.2

十四周 14.314.4

十五周 第十四章复习

十六周 15.115.2

十七周 15.315.4

十八周 第十五章小结

十九周 期末复习

二十周 期末考试

随便看

 

范文网提供海量优质实用美文,包含随笔、日记、古诗文、实用文、总结、计划、祝福语、句子、职场文档等范文,为您写作提供指导和优质素材。

 

Copyright © 2004-2023 ixindu.com All Rights Reserved
更新时间:2024/12/23 0:19:01